The International Diabetes Closed Loop (iDCL) trial: Clinical Acceptance of the Artificial Pancreas

³ A Pivotal Study of t:slim X2 with Control-IQ Technology

4	Protocol Chair
5	Sue Brown, MD
6	University of Virginia
7	Center for Diabetes Technology
8	Participating Institutions
9	University of Virginia, Charlottesville, Virginia
10	Harvard University and the Joslin Diabetes Center, Massachusetts
11	Sansum Diabetes Research Institute, Santa Barbara, California
12	Mount Sinai School of Medicine, New York City
13	Mayo Clinic, Rochester, Minnesota
14	Barbara Davis Center, University of Colorado, Colorado
15	Stanford University, California
17	Coordinating Contor
16	<u>Coordinating Center</u>
17	Jaeb Center for Health Research, Tampa, FL
18	Version Number: v10.0
19	5 NOV 2018
20	
20	

21

KEY ROLES

Protocol Chair/Director		
Name, degree	Sue A. Brown, MD	
Institution Name	University of Virginia, Center for Diabetes Technology	
JCHR Coordinating Center Director		
Name, degree	John Lum, M.S.	
Institution Name	Jaeb Center for Health Research	
Medical Monitor		
Name, degree	Roy Beck, M.D., Ph.D.	
Institution Name Jaeb Center for Health Research		

23	TABLE OF CONTENTS	
24	CHAPTER 1: BACKGROUND INFORMATION	
25	1.1 Introduction	
26	1.2 Rationale	
27	1.3 Potential Risks and Benefits of the Investigational Device	
28	1.3.1 Known Potential Risks	
29	1.3.1.1 Venipuncture Risks	
30	1.3.1.2 Fingerstick Risks	
31	1.3.1.3 Subcutaneous Catheter Risks (CGM)	
32	1.3.1.4 Risk of Hypoglycemia	
33	1.3.1.5 Risk of Hyperglycemia	
34	1.3.1.6 Risk of Device Reuse	20
35	1.3.1.7 Questionnaire	20
36	1.3.1.8 Other Risks	20
37	1.3.2 Known Potential Benefits	21
38	1.3.3 Risk Assessment	21
39	1.4 General Considerations	21
40	CHAPTER 2: STUDY ENROLLMENT AND SCREENING	
41	2.1 Participant Recruitment and Enrollment	
42	2.1.1 Informed Consent and Authorization Procedures	
43	2.2 Participant Inclusion Criteria	
44	2.3 Participant Exclusion Criteria	23
45	2.4 Screening Procedures	24
46	2.4.1 Data Collection and Testing	
47	CHAPTER 3: RUN-IN PHASE	26
48	3.1 Run-in Phase Overview	
49	3.2 Optimization of Insulin Pump Settings	
50	CHAPTER 4: RANDOMIZATION VISIT	31
51	4.1 Randomization Visit	
52	4.1.1 HbA1c	
53	4.1.2 Baseline C-Peptide Assessment	
54	4.1.3 Randomization	
55	4.1.4 Questionnaires	
56	CHAPTER 5: RANDOMIZED TRIAL PROCEDURES	

57	5.1 Procedures for the CLC Group	
58	5.1.1 Study System Training	
59	5.1.2 Home Use of the Study System	
60	5.1.3 Study Device Download	
61	5.1.4 1-Week Phone Contact	
62	5.1.5 2-Week Visit (Training Review and Insulin Pump Optimization)	
63	5.2 Procedures for the SAP Group	
64	5.2.1 Study Device Data Download	
65	5.2.2 1-Week Phone Contact	
66	5.2.3 2-Week Visit (Training Review and Insulin Pump Optimization)	
67	5.3 Follow-up Visits and Phone Contacts for Both Groups	
68	5.3.1 Follow-up Visits	
69	5.3.1.1 Procedures at Follow-up Visits	
70	5.3.2 Phone Contacts	
71	5.4 Early Termination Visit (If Applicable)	
72	5.5 Unscheduled Visits	
73	5.6 Participant Access to Study Device at Study Closure	
74	CHAPTER 6: STUDY DEVICES	
75	6.1 Description of the Investigational Device	
76	6.1.1 Insulin Pump	
77	6.1.2 Continuous Glucose Monitoring	
78	6.1.3 Blood Glucose Meter and Strips	
79	6.1.4 Ketone Meter and Strips	
80	6.1.5 Study Device Accountability Procedures	
81	6.1.6 Blood Glucose Meter Testing	
82	6.1.7 Blood Ketone Testing	
83	6.2 Safety Measures	
84	6.2.1 CGM Calibration	
85	6.2.2 System Failure	
86	6.2.3 Hypoglycemia Threshold Alert and Safety Protocol	
87	6.2.4 Hyperglycemia Threshold Alert and Safety Protocol	
88	CHAPTER 7: TESTING PROCEDURES AND QUESTIONNAIRES	41
89	7.1 Laboratory Testing	41
90	7.2 Questionnaires	41
91	CHAPTER 8: Adverse Events, Device Issues, and Stopping Rules	45

92	8.1 Adverse Events	45
93	8.1.1 Definitions	45
94	8.1.2 Reportable Adverse Events	46
95	8.1.2.1 Hypoglycemic Events	46
96	8.1.2.2 Hyperglycemic Events/Diabetic Ketoacidosis	46
97	8.1.3 Relationship of Adverse Event to Study Device	47
98	8.1.4 Intensity of Adverse Event	47
99	8.1.5 Coding of Adverse Events	49
100	8.1.6 Outcome of Adverse Event	49
101	8.2 Reportable Device Issues	
102	8.3 Pregnancy Reporting	
103	8.4 Timing of Event Reporting	
104	8.5 Stopping Criteria	51
105	8.5.1 Participant Discontinuation of Study Device	51
106	8.5.2 Criteria for Suspending or Stopping Overall Study	51
107	8.6 Independent Safety Oversight	
108	8.7 Risks	
109	CHAPTER 9: MISCELLANEOUS CONSIDERATIONS	53
110	9.1 Drugs Used as Part of the Protocol	53
111	9.2 Prohibited Medications, Treatments, and Procedures	53
112	9.3 Participant Compensation	53
113	9.4 Participant Withdrawal	53
114	9.5 Confidentiality	53
115	CHAPTER 10: STATISTICAL CONSIDERATION	55
116	10.1 Statistical and Analytical Plans	55
117	10.2 Statistical Hypotheses	55
118	10.3 Sample Size	55
119	10.4 Outcome Measures	55
120	10.4.1 Primary Efficacy Endpoint	55
121	10.4.2 Secondary Efficacy Endpoints	56
122	10.4.2.1 Secondary Efficacy Endpoints Included in Hierarchical Analysis	56
123	10.4.2.2 Other Secondary Efficacy Endpoints	56
124	10.4.2.3 Safety Analyses	57
125	10.4.3 CGM Metrics Calculations	
126	10.5 Analysis Datasets and Sensitivity Analyses	
127	10.5.1 Per Protocol Analyses	

128	10.5.2 Other Sensitivity Analyses		
129			
130	10.7 Analysis of the Secondary Endpoints		
131	10.7.1 Hierarchical Analyses		
132	10.7.2 Other Endpoint Analyses	61	
133	10.8 Safety Analyses		
134	10.9 Intervention Adherence		
135	10.10 Adherence and Retention Analyses		
136	10.11 Baseline Descriptive Statistics		
137	10.12 Device Issues		
138	10.13 Planned Interim Analyses		
139	10.14 Subgroup Analyses		
140	10.15 Multiple Comparison/Multiplicity		
141	10.16 Exploratory Analyses		
142	CHAPTER 11: DATA COLLECTION AND MONITORING	67	
142 143	CHAPTER 11: DATA COLLECTION AND MONITORING 11.1 Case Report Forms and Device Data		
143	11.1 Case Report Forms and Device Data		
143 144	11.1 Case Report Forms and Device Data11.2 Study Records Retention		
143 144 145	11.1 Case Report Forms and Device Data11.2 Study Records Retention11.3 Quality Assurance and Monitoring		
143 144 145 146	 11.1 Case Report Forms and Device Data 11.2 Study Records Retention		
143 144 145 146 147	 11.1 Case Report Forms and Device Data 11.2 Study Records Retention		
143 144 145 146 147 148	 11.1 Case Report Forms and Device Data		
143 144 145 146 147 148 149	 11.1 Case Report Forms and Device Data		
143 144 145 146 147 148 149 150	 11.1 Case Report Forms and Device Data		

156

LIST OF ABBREVIATIONS

ABBREVIATION	DEFINITION
AP	Artificial Pancreas
BG	Blood Glucose
BT/BTLE Bluetooth, Bluetooth low energy	
CRF	Case Report Form
CGM	Continuous Glucose Monitoring
CLC	Closed-Loop Control
CSII	Continuous Subcutaneous Insulin Injection
CTR	Control-to-Range
DiAs	Diabetes Assistant
DKA	Diabetic Ketoacidosis
EC	European Commission
FDA	Food and Drug Administration
GCP	Good Clinical Practice
HbA1c	Hemoglobin A1c
ID	Identification
iDCL	International Diabetes Closed Loop
IDE	Investigational Device Exemption
IOB	Insulin-on-Board
IQR	Interquartile Range
JDRF	Juvenile Diabetes Research Foundation
NIH	National Institutes of Health
POC	Point-of-Care
QA	Quality Assurance
QC	Quality Control
RBM	Risk-Based Monitoring
SAP	Sensor-Augmented Pump
SD	Standard Deviation
TDD	Total Daily Dose
UI	User Interface
UVA	University of Virginia

157

159	Signature Page
160 161	The International Diabetes Closed Loop (iDCL) trial: Clinical Acceptance of the Artificial Pancreas
162	A Pivotal Study of t:slim X2 with Control-IQ Technology
163	Protocol Identifying Number: DCLP3
164	IND/IDE Sponsor: University of Virginia
165	Version Number: v.10.0
166	5 NOV 2018
167	
168	
169	

JCHR Principal Investigator	
Name, degree	John W. Lum, M.S.
Signature / Date	
Protocol Chair/Director	
Name, degree	Sue A. Brown, MD
Signature / Date	

171 SITE PRINCIPAL INVESTIGATOR STATEMENT OF COMPLIANCE

Protocol Title: The International Diabetes Closed Loop (iDCL) trial: Clinical Acceptance of the Artificial Pancreas - A Pivotal Study of t:slim X2 with Control-IQ Technology

174 Protocol Version/Date: v10.0/5 NOV 2018

175 I have read the protocol specified above. In my formal capacity as a Site Principal Investigator,

176 my duties include ensuring the safety of the study participants enrolled under my supervision and

177 providing the Jaeb Center for Health Research, which serves as the Coordinating Center for the

178 protocol, with complete and timely information, as outlined in the protocol. It is understood that

- all information pertaining to the study will be held strictly confidential and that this
- 180 confidentiality requirement applies to all study staff at this site.
- 181 This trial will be carried out in accordance with ICH E6 Good Clinical Practice (GCP) and as

182 required by the following: United States (US) Code of Federal Regulations (CFR) applicable to

clinical studies (45 CFR Part 46, 21 CFR Part 50, 21 CFR Part 56, 21 CFR Part 312, and/or 21

184 CFR Part 812).

185 As the Principal Investigator, I will assure that no deviation from, or changes to the protocol

186 will take place without prior agreement from the sponsor and documented approval from the

187 Institutional Review Board (IRB), or other approved Ethics Committee, except where necessary

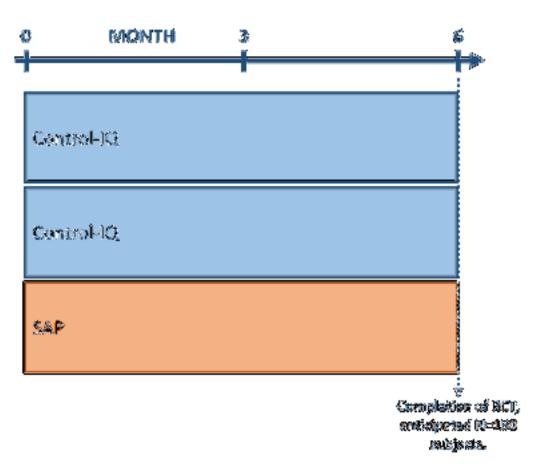
188 to eliminate an immediate hazard(s) to the trial participants.

189 All key personnel (all individuals responsible for the design and conduct of this trial) have

190 completed Human Participants Protection Training and Good Clinical Practice Training.

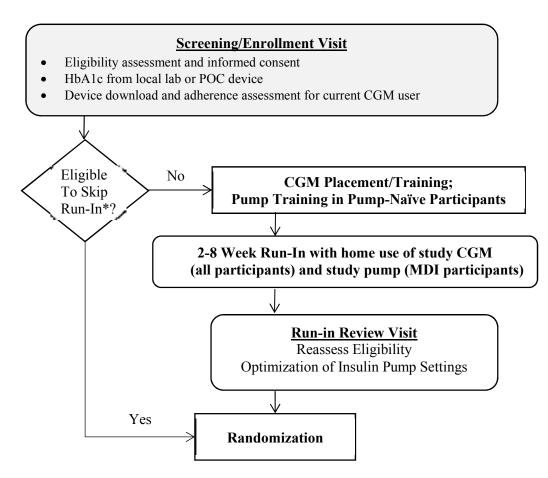
191 Further, I agree to ensure that all staff members involved in the conduct of this study are

192 informed about their obligations in meeting the above commitments.


193 194	Investigator's Signature	Date:	/ /	′ ′ ′	
195	Investigator's Name:		uu		уууу

 196
 Site Name/Number:

PROTOCOL SUMMARY


PARTICIPANT AREA	DESCRIPTION	
Title	The International Diabetes Closed Loop (iDCL) Trial: Pivotal Trial of t:slim X2 with Control-IQ Technology	
Précis	A randomized controlled trial of 6 month at home closed loop system vs. sensor-augmented pump.	
Investigational Device	t:slim X2 with Control-IQ and Dexcom G6 system	
Objectives	The objective of the study is to assess efficacy and safety of a closed loop system (t:slim X2 with Control-IQ Technology) in a large randomized controlled trial.	
Study Design	Randomized Clinical Trial with 2:1 randomization to intervention with the closed loop system vs. sensor-augmented pump for 6 months. See Figure 1.	
Number of Sites	Seven US clinical sites	
Endpoint	The primary outcome is time in target range 70-180 mg/dL measured by CGM in CLC group vs. SAP group at 6 months	
Population	 Key Inclusion Criteria Type 1 Diabetes Ages 14 and older Key Exclusion Criteria Use of any non-insulin glucose-lowering agents except metformin 	
Sample Size	Up to seven clinical sites in the United States may enroll up to 225 total participants with the goal of randomizing 168 participants such that at least 150 participants complete the 6-month randomized trial.	
Treatment Groups	 Randomized Trial Intervention Group: t:slim X2 with Control-IQ Technology and Study CGM. Control Group: Sensor-augmented pump (SAP) with no automated insulin delivery, and study CGM 	
Participant Duration	6-8 months	
Protocol Overview/Synopsis	After consent is signed, eligibility will be assessed. Eligible participants not currently using an insulin pump and Dexcom G4, G5, or G6 CGM with minimum data requirements will initiate a run-in phase of 2 to 8 weeks that will be customized based on whether the participant is already a pump or CGM user. Participants who skip or successfully complete the run-in will be randomly assigned 2:1 to the use of closed-loop control (CLC group) using t:slim X2 with Control-IQ Technology vs SAP for 6 months.	

198

200 201

Figure 1: Study Design: Participants Randomized 2:1 Control-IQ vs. SAP

*Current use of insulin pump and Dexcom G4, G5, or G6 CGM with readings captured on at least 11 out of the previous 14 days

203 204

Figure 2: Schematic of Study Design (Pre-Randomization)

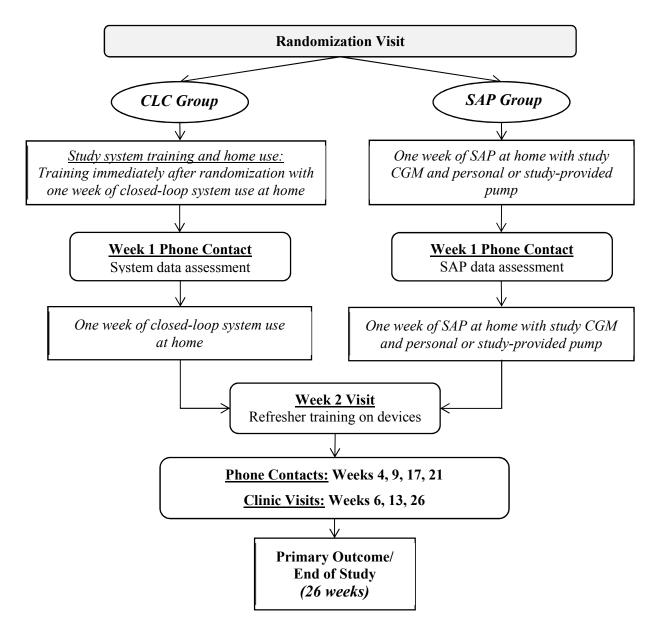
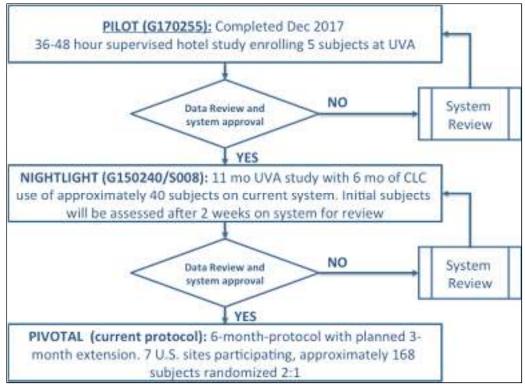


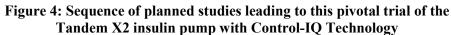
Figure 3. Schematic of Study Design (Post-Randomization)

208

Table 1. Schedule of Study Visits and Procedures

	Pre	Pre	0	1w	2w	4w	6w	9w	13w	17w	21w	26w
Visit (V) or Phone (P)	V	V	V	Р	V	Р	V	Р	V	Р	Р	V
Comment	Screen/ Enroll	Run-in	Rand									
Eligibility Assessment	X	X	X									
HbA1c (DCA Vantage or similar point of care device, or local lab)	X		X						X			x
HbA1c (Central lab)			X						X			X
C-peptide (Central lab) and blood glucose assessment			X									
Pregnancy test (females of child-bearing potential)	X		X						X			
Device Data download(s)	X	X	X	X	X	X	X	X	X	X	X	X
Review diabetes management and AEs		X	X	X	X	X	X	X	X	X	X	X
Questionnaires as defined in section 7.2			X						X			X


209 Chapter 1: Background Information


210 **1.1 Introduction**

211 The Tandem X2 insulin pump with Control-IQ Technology is a third-generation closed-loop

- 212 control (CLC) system retaining the same control algorithm that was initially tested by UVA's
- 213 DiAs system and then implemented in the inControl system. DiAs is described in 13 IDEs
- (see IDEs 1-12 and 14 in the list below) and inControl is described in IDEs G160097, G160181,
- 215 G150240, G140169/S010. For complete algorithmic and clinical background, we refer to these
- 216 IDEs and to a number of scientific publications that describe glycemic control outcomes and 217 clinical impressions from the use of these systems (see list of 25 peer-reviewed papers and
- 217 chincal impressions from the use of these systems (see list of 25 peer-reviewed papers and 218 scientific presentations under Bibliography). Overall, this control algorithm has been
- 219 implemented in two mobile platforms (DiAs and inControl) and has been tested in 30 clinical
- trials by 450 adults and children with type 1 diabetes for over 280,000 hours of use to date in the
- U.S. and overseas.
- As described in the Background, this project is a result from a sequence of clinical trials that
- have tested extensively the control system and in several centers in the U.S. and overseas. The
- following 18 IDEs reflect this progress:
- IDE #G110095: Feasibility study of closed loop control in type 1 diabetes using heart rate monitoring as an exercise marker, approved 10/08/2011;
- 227 2. IDE #G120032: Early feasibility (pilot) study of outpatient control-to-range; 3/2/2012;
- 3. IDE #G120210: Early feasibility study 2 of outpatient control-to-range; 10/12/2012;
- 4. IDE #G130118: DiAs control-to-range nocturnal closed-loop camp study; 6/19/2013;
- IDE #G130121: Optimizing closed-loop control of type 1 diabetes mellitus in adolescents;
 6/19/2013;
- BE# G130142: Closed loop control in adolescents using heart rate as exercise indicator;
 7/16/13;
- IDE #G130143: Early feasibility study of adaptive advisory/automated (AAA) control of
 type 1 diabetes; 7/19/2013;
- 8. IDE #G140066: Full day and night closed-loop with DiAs platform; 5/9/14.
- 9. IDE #G140068: Unified Safety System (USS) Virginia Closed Loop versus sensor
 augmented pump therapy overnight in type 1 diabetes; 5/14/2014;
- 10. IDE #G140089: Outpatient control-to-range: Safety and efficacy with day-and-night in-home
 use; 6/6/2014;
- 11. IDE #G140169: Unified Safety System (USS) Virginia Closed-Loop versus Sensor
 Augmented Pump (SAP) therapy for hypoglycemia reduction in type 1 diabetes; 10/3/2014.
- 12. IDE #G150221: Reducing risks and improving glucose control during extended exercise in youth with T1DM: The AP Ski Camp; 11/09/2015;
- 13. IDE #G150240: Project Nightlight: Efficacy and system acceptance of dinner/night vs. 24 hr
 closed loop control; 11/12/2015;

- 14. IDE #G160047: Closed-loop in young children 5-8 years old using DiAs platform;
 03/29/2016;
- 15. IDE #G160097: Clinical Acceptance of the Artificial Pancreas: the International Diabetes
 Closed-Loop (iDCL) Trial/Research Site Training Protocol; 06/03/16.
- 16. IDE#G160181: PROTOCOL 1 for "Clinical Acceptance of the Artificial Pancreas: The
 International Diabetes Closed Loop (iDCL) Trial; 09/21/16
- 17. IDE#G170255: Protocol 3 for "Pilot Trial of t:slim X2 with Control-IQ
 Technology";11/16/17 and IDE#G170255/S001 Protocol 3 for "Training Study of t:slim X2
 with Control-IQ Technology"; 11/16/17
- 18. IDE#G170267: "Real-Time Monitoring and Glucose Control During Winter-Sport Exercise
 in Youth with Type 1 Diabetes: The AP Ski Camp Continued"; 11/21/17
- We further reference pre-submission Q170885 and our discussion with FDA on July 18, 2017
- regarding the structure of studies intended to test inControl implemented on t:slim X2. Based on
- the input provided by the Agency, we initially defined a series of three studies leading to a future
- 261 pivotal trial of this system (36-48 hr Pilot Study, 2 week at home Training Study, followed by
- the Pivotal Trial). Since the time of the initial discussion, we have concluded a successful Pilot
- of 5 Adult (December 2017) and a Ski Camp with 12 Teenagers (January 2018) on the System.
- 264 We have also received approval for the use of this system in a long-term home study (Project
- Nightlight/G#150240/S008). The Project Nightlight Study will now replace the previous
 Training Study as noted in Figure 4.

- A successful pilot of 5 Adults (mean age 52.8 yrs; 3F/2M, mean A1c 6.5%) with Type 1
- 271 Diabetes was completed in December 2017. In this pilot study, the system was challenged with
- a variety of scenarios including: Pump disconnection, CGM sensor removal without stopping
- 273 session, CGM sensor change, Basal Rate change, Cartridge Change, Extended Bolus, Calibration
- at non-ideal conditions, Stopping Control-IQ, Reset Sleep Time, Restaurant Meals and Exercise
- 275 (treadmill/walk). The study demonstrated excellent connectivity with 98% time in closed-loop
- control and 94% time CGM is available during 196 hours of use.
- 277

Table 2. Pilot Study results based on time in closed-loop

METRIC (COMPUTED DURING CLOSED-LOOP USE)	OVERALL	DAYTIME	NIGHTTIME
Mean glucose (mg/dL)	129	135	121
Coefficient of variation (median)	27%	27%	21%
% below 54 mg/dL (median)	0.7%	0.0%	0.0%
% below 60 mg/dL (median)	1.1%	2.0%	0.0%
% below 70 mg/dL (median)	2.9%	4.1%	1.0%
Percent in range 70-180 mg/dL (mean)	87%	82%	94%
% above 180 mg/dL (median)	5%	8%	6%
% above 250 mg/dL (median)	0%	0%	0%
% above 300 mg/dL (median)	0%	0%	0%

278 Closed-Loop Control System

279 The Closed-Loop Control System contained in t-slim X2 with Control-IQ Technology is

280 described in Master File MAF-2032/A008. Control-IQ Technology is derived from inControl

281 previously described in IDE# G160097, G160181, G150240 and G140169/S010. The CLC is

an "artificial pancreas" (AP) application that uses advanced closed loop control algorithms to

automatically manage blood glucose levels for people with Type 1 Diabetes. The system

284 modulates insulin to keep blood glucose in a targeted range. The system components include

the t:slim X2 with Control-IQ Technology and the Dexcom CGM G6.

Exercise	STARD	
Blanp	START	
Sleep Schedulos	>	

286 287

Figure 5. t:slim X2 with Control-IQ and Dexcom G6 system

288 **1.2 Rationale**

289 The objective of this randomized clinical trial is to 1) assess the efficacy and safety of the

290 Control-IO closed loop system over a 6 month period, the data from which may be used for subsequent PMA application for this system and 2) investigate longer term use of the system

291

292 compared with switching to sensor-augmented pump therapy.

293 1.3 Potential Risks and Benefits of the Investigational Device

294 Risks and Benefits are detailed below. Loss of confidentiality is a potential risk; however, data 295 are handled to minimize this risk. Hypoglycemia, hyperglycemia and ketone formation are 296 always a risk in participants with type 1 diabetes and participants will be monitored for this.

- 297 **1.3.1 Known Potential Risks**
- 298 1.3.1.1 Venipuncture Risks

299 A hollow needle/plastic tube will be placed in the arm for taking blood samples. Blood draws

300 can cause some common reactions like pain, bruising, or redness at the sampling site. Less

301 common reactions include bleeding from the sampling site, formation of a small blood clot or

302 swelling of the vein and surrounding tissues, and fainting.

303 1.3.1.2 Fingerstick Risks

304 About 1 drop of blood will be removed by fingerstick for measuring blood sugars and sometimes 305 HbA1c or other tests. This is a standard method used to obtain blood for routine hospital laboratory tests. Pain is common at the time of lancing. In about 1 in 10 cases, a small amount 306

307 of bleeding under the skin will produce a bruise. A small scar may persist for several weeks.

The risk of local infection is less than 1 in 1000. This should not be a significant contributor to 308 309 risks in this study as fingersticks are part of the usual care for people with diabetes.

310 1.3.1.3 Subcutaneous Catheter Risks (CGM)

311 Participants using the CGM will be at low risk for developing a local skin infection at the site of 312 the sensor needle placement. If a catheter is left under the skin for more than 24 hours it is 313 possible to get an infection where it goes into the skin, with swelling, redness and pain. There 314 may be bleeding where the catheter is put in and bleeding under the skin causes a bruise (1 in 10 315 risk).

- 316 Study staff should verbally alert the participant that on rare occasions, the CGM may break and 317 leave a small portion of the sensor under the skin that may cause redness, swelling or pain at the
- 318 insertion site. The participant should be further instructed to notify the study coordinator
- 319 immediately if this occurs.

320 1.3.1.4 Risk of Hypoglycemia

321 As with any person having type 1 diabetes and using insulin, there is always a risk of having a 322

low blood sugar (hypoglycemia). The frequency of hypoglycemia should be no more and

323 possibly less than it would be as part of daily living. Symptoms of hypoglycemia can include 324

sweating, jitteriness, and not feeling well. Just as at home, there is the possibility of fainting or

- of hypoglycemia. A CGM functioning poorly and significantly over-reading glucose values could lead to inappropriate insulin delivery. 326
- 327

328 1.3.1.5 Risk of Hyperglycemia

329 Hyperglycemia and ketonemia could occur if insulin delivery is attenuated or suspended for an

330 extended period or if the pump or infusion set is not working properly. A CGM functioning

331 poorly and significantly under-reading glucose values could lead to inappropriate suspension of 332 insulin delivery.

333 1.3.1.6 Risk of Device Reuse

334 The study CGM system is labeled for single use only. The sensor (the component of the system 335 that enters the skin) will be single use only. The transmitter and receiver may be reused during 336 the study after cleaning the device using a hospital-approved cleaning procedure. The transmitter 337 is attached to the sensor but does not enter the skin and the receiver is a hand held device. Participants will be informed that FDA or relevant national authorities have approved these 338 339 devices for single use and that by using them among multiple patients, bloodborne pathogens 340 (i.e. Hepatitis B) may be spread through the use of multiple users.

341 The study insulin pump is labeled for single-patient use. During the study, this device may be

342 reused after cleaning adhering to a hospital-approved cleaning procedure. All infusion set

343 equipment will be single patient use only (infusion set insertion kits, tubing, cartridges etc.)

344 Participants will be informed that FDA or relevant national authorities typically approve the

345 insulin pump device for single use and that by using them among multiple patients, bloodborne

346 pathogens (i.e. Hepatitis B) may be spread through the use of multiple users.

347 The study blood glucose meter and blood ketone meter are labeled for single-patient use.

348 During the study, only one person can use each device as there are rare risks that bloodborne

349 pathogens (i.e. Hepatitis B) may be spread through the use of multiple users.

350 1.3.1.7 Questionnaire

351 As part of the study, participants will complete questionnaires which include questions about

352 their private attitudes, feelings and behavior related to the investigational equipment as well as 353 managing diabetes. It is possible that some people may find these questionnaires to be mildly

- 354 upsetting. Similar questionnaires have been used in previous research and these types of
- reactions have been uncommon. 355

356 1.3.1.8 Other Risks

357 Some participants may develop skin irritation or allergic reactions to the adhesives used to secure

358 the CGM, or to secure the insulin infusion sets for the continuous subcutaneous insulin infusion.

If these reactions occur, different adhesives or "under-taping" (such as with IV 3000, Tegaderm, 359

360 etc.) will be tried, sites will be rotated frequently, and a mild topical steroid cream or other

361 medication may be required.

362 Whenever the skin is broken there is the possibility of an infection. The CGM and pump

363 infusion sites are inserted under the skin. It is possible that any part that is inserted under the

skin may cause an infection. These occur very infrequently, but, if an infection was to occur, 364

365 oral and/or topical antibiotics can be used. The risk of skin problems could be greater if you use

366 a sensor for longer than it is supposed to be used. Therefore, participants will be carefully

367 instructed about proper use of the sensor.

- 368 Data downloaded from the CGM, pump, and the home glucose and ketone meter will be
- 369 collected for the study as measures of diabetes self-management behaviors. Some people
- 370 may be uncomfortable with the researchers' having such detailed information about their daily
- diabetes habits.

372 **1.3.2 Known Potential Benefits**

- 373 One purpose of this research is to reduce the frequency of hypoglycemia and severe
- 374 hypoglycemic events. Hypoglycemia is the number one fear of many individuals and families
- 375 with someone who has type 1 diabetes and this fear often prevents optimal glycemic control.
- 376 It is expected that this protocol will yield increased knowledge about using an automated
- 377 closed-loop to control the glucose level and is intended to develop data to support a future
- 378 PMA-application. The individual participant may not benefit from study participation.

379 **1.3.3 Risk Assessment**

- Based on the facts that (1) adults and adolescents with diabetes experience mild hypoglycemia
- and hyperglycemia frequently as a consequence of the disease and its management, (2) the study
- 382 intervention involves periodic automated insulin dosing that may increase the likelihood of 383 hypoglycemia, and periodic automated attenuation of insulin delivery that may increase the
- 1383 hypoglycemia, and periodic automated attenuation of insulin delivery that may increase the
 1384 likelihood of hyperglycemia, (3) mitigations are in place, and have been tested in prior studies
- using the investigational device system in the home setting, that limit the likelihood of excessive
- insulin dosing or prolonged withdrawal of insulin, and (4) rapid reversal of hypoglycemia and
- 387 hyperglycemia can be achieved, it is the assessment of the investigators that this protocol falls
- 388 under DHHS 46.405 which is a minor increase over minimal risk. In addition, it is the belief of
- 389 the investigators that this study also presents prospect of direct benefit to the participants and
- 390 general benefit to others with diabetes.

1.4 General Considerations

- 392 The study is being conducted in compliance with the policies described in the study policies
- document, with the ethical principles that have their origin in the Declaration of Helsinki, with the protocol described herein, and with the standards of Good Clinical Practice (GCP).
- 395 Whenever possible, data will be directly collected in electronic case report forms, which will be 396 considered the source data.
- There is no restriction on the number of participants to be enrolled by each site toward theoverall recruitment goal.
- 399 The protocol is considered a significant risk device study, due to the fact that the closed loop
- 400 system is experimental. Therefore, an investigational device exemption (IDE) from the U.S.
- 401 Food and Drug Administration (FDA) is required to conduct the study.

402 Chapter 2: Study Enrollment and Screening

403 **2.1 Participant Recruitment and Enrollment**

404 Enrollment will proceed with the goal of having 168 participants enter the randomized trial, with 405 the expectation that 150 participants will complete the 6-month randomized trial. A maximum 406 of 225 individuals may be enrolled into screening for the study in order to achieve this goal.

407 Study participants will be recruited from 7 clinical centers in the United States without regard to 408 gender, race, or ethnicity. There is no restriction on the number of participants to be enrolled by 409 each site toward the overall recruitment goal.

A study goal will be to have the following minimum numbers of participants complete the trial inthe specified subgroups at the time of enrollment:

- At least 50 participants with HbA1c \geq 7.5% and 50 participants with HbA1c <7.5%
- At least 50 participants in the age range 14 to <26 and 50 participants ≥ 26 years old
- At least 30 participants who are on multiple daily injections (MDI) rather than pump
- 415 At least 30 participants who are CGM-naïve (defined as not using a CGM in the prior 14 days)
- 417

2.1.1 Informed Consent and Authorization Procedures

418 Potential eligibility may be assessed as part of a routine-care examination. Before completing

419 any procedures or collecting any data that are not part of usual care, written informed consent

420 will be obtained.

421 For potential study participants ≥ 18 years old, the study protocol will be discussed with the

422 potential study participant by study staff. The potential study participant will be given the

423 Informed Consent Form to read. Potential study participants will be encouraged to discuss the

424 study with family members and their personal physicians(s) before deciding whether to

425 participate in the study.

For potential participants under 18 years of age, a parent/legal guardian (referred to subsequently

427 as "parent") will be provided with the Informed Consent Form to read and will be given the
428 opportunity to ask questions. Potential participants meeting the IRB's minimum age of assent

428 will be given a Child Assent Form to read and discuss with his/her parents and study personnel.

430 If the parent and child agree to participate, the Informed Consent Form and Child Assent Form

431 will be signed. A copy of the consent form will be provided to the participant and his/her parent

432 and another copy will be added to the participant's study record.

- 433 As part of the informed consent process, each participant will be asked to sign an authorization
- 434 for release of personal information. The investigator, or his or her designee, will review the
- 435 study-specific information that will be collected and to whom that information will be disclosed.
- 436 After speaking with the participant, questions will be answered about the details regarding
- 437 authorization.

438 A participant is considered enrolled when the informed consent form has been signed.

- 439 **2.2 Participant Inclusion Criteria**
- Individuals must meet all of the following inclusion criteria in order to be eligible to participatein the study.
- 442 1. Clinical diagnosis, based on investigator assessment, of type 1 diabetes for at least one year
 443 and using insulin for at least 1 year
- 444 2. Familiarity and use of a carbohydrate ratio for meal boluses.
- 445 3. Age ≥ 14.0 years old
- 446 4. For females, not currently known to be pregnant
- If female and sexually active, must agree to use a form of contraception to prevent pregnancy
 while a participant in the study. A negative serum or urine pregnancy test will be required
 for all females of child-bearing potential. Participants who become pregnant will be
 discontinued from the study. Also, participants who during the study develop and express
- 451 *the intention to become pregnant within the timespan of the study will be discontinued.*
- 452 5. For participants <18 years old, living with one or more parent/legal guardian knowledgeable
 453 about emergency procedures for severe hypoglycemia and able to contact the participant in
 454 case of an emergency.
- 4556. Willingness to suspend use of any personal CGM for the duration of the clinical trial once the456456 study CGM is in use
- 457 7. Willingness to use a regular insulin pump during the study with no automatic insulin adjustment based on glucose level when assigned to participate in an SAP group
- 8. Investigator has confidence that the participant can successfully operate all study devices and is capable of adhering to the protocol
- 461
 9. Willingness to switch to lispro (Humalog) or aspart (Novolog) if not using already, and to use no other insulin besides lispro (Humalog) or aspart (Novolog) during the study.
- 463 10. Total daily insulin dose (TDD) at least 10 U/day
- 464 11. Willingness not to start any new non-insulin glucose-lowering agent during the course of the465 trial (see section 2.3)
- 466 **2.3 Participant Exclusion Criteria**
- 467 Individuals meeting any of the following exclusion criteria at baseline will be excluded from468 study participation.
- 469 1. Concurrent use of any non-insulin glucose-lowering agent other than metformin (including
 470 GLP-1 agonists, Symlin, DPP-4 inhibitors, SGLT-2 inhibitors, sulfonylureas).
- 471 2. Hemophilia or any other bleeding disorder
- 472 3. A condition, which in the opinion of the investigator or designee, would put the participant or
 473 study at risk

- 474 4. Participation in another pharmaceutical or device trial at the time of enrollment or during the475 study
- 476 5. Employed by, or having immediate family members employed by Tandem Diabetes Care,
- 477 Inc. or TypeZero Technologies, LLC, or having a direct supervisor at place of employment
- 478 who is also directly involved in conducting the clinical trial (as a study investigator,
- 479 coordinator, etc.); or having a first-degree relative who is directly involved in conducting the480 clinical trial

481 **2.4 Screening Procedures**

- 482 After informed consent has been signed, a potential participant will be evaluated for study
- eligibility through the elicitation of a medical history, performance of a physical examination
- 484 by study personnel and local laboratory testing if needed to screen for exclusionary medical485 conditions.
- Individuals who do not initially meet study eligibility requirements may be rescreened at a laterdate per investigator discretion.

488 **2.4.1 Data Collection and Testing**

- 489 A standard physical exam (including vital signs and height and weight measurements) will be
- 490 performed by the study investigator or designee (a physician, fellow, nurse practitioner or a 491 physician assistant).
- 492 The following procedures will be performed/data collected/eligibility criteria checked and
- 493 documented:
- 494 Inclusion and exclusion criteria assessed
- Demographics (date of birth, sex, race and ethnicity)
- Contact information (retained at the site and not entered into study database)
- 497 Medical history
- 498 Concomitant medications
- Physical examination to include:
- 500 Weight, height
- Vital signs including measurement of blood pressure and pulse

502	• Blood draw for:
503 504	 HbA1c level measured using the DCA2000 or comparable point of care device or local lab
505 506	 Measurement performed as part of usual clinical care prior to obtaining informed consent for participation in the trial may be used
507	 Measurement must be made within two weeks prior to enrollment
508	• Urine or serum pregnancy test for all women of child-bearing potential

509 Screening procedures will last approximately 1-2 hours.

510 Chapter 3: Run-In Phase

511 **3.1 Run-in Phase Overview**

512 This phase may begin immediately after enrollment is complete or may be deferred for a

513 maximum of 28 days. The purpose of this run-in phase is to 1) assess compliance with study

- 514 procedures, 2) to introduce the study CGM to study participants without current use of a CGM
- and 3) to introduce an insulin pump to participants who have not previously used an insulin
- 516 pump.
- 517 Participants who do not currently use an insulin pump and a Dexcom G4, G5, or G6 CGM with
- readings captured on at least 11 out of the previous 14 days at the time of enrollment will be
- 519 required to participate in the run-in phase. Participants will use the study CGM for a minimum
- of 11 days with a goal of at least 14 days during the run-in phase. Participants who are on MDI at
- 621 enrollment will receive a study pump to use and will receive training as detailed below. All
- 522 participants will receive training on the study CGM as detailed below. This will be an unblinded
- 523 use of the study CGM.

524 Initiation of CGM

- 525 The participant will be provided with sensors and instructed to use the study CGM on a daily
- 526 basis. Training will be provided to participants not experienced with CGM use as to how to use
- 527 the CGM in real-time to make management decisions and how to review the data after an upload
- 528 for retrospective review. Participants using a personal CGM prior to the study will discontinue
- 529 the personal CGM beginning in this period.
- 530 The participant will be observed placing the sensor. The study CGM user's guide will be
- 531 provided for the participant to take home.

532 **Initiation of Pump**

- 533 Pump-naïve participants who have not used a CGM in the 14 days prior to enrollment will first
- 534 complete a CGM-only Run-in period of approximately 14 days prior to initiating study pump 535 use.
- 536 Participants who are pump-naïve will be provided with a study pump similar to the pump used
- 537 with the closed-loop system, but with the closed-loop control feature either absent or deactivated,
- and will be instructed to use the pump on a daily basis. An initial basal insulin profile will be
- customized on a per-participant basis. Total daily insulin dose will be reduced by approximately
- 540 20% as a general rule, with a recommended method outlined in a separate procedures manual.
- 541 Further adjustments to total daily dose (TDD) and intraday basal rate profile may be made during
- the course of the run-in period.
- 543 Participants will complete training on the study pump as detailed below.
- The participant will be fully instructed on the study insulin pump. A qualified system trainer
- 545 will conduct the training and in particular discuss differences from their home pump in
- 546 important aspects such as calculation of insulin on board (IOB) and correction boluses.

- 547 Additional topics are not limited to but may include: infusion site initiation,
- 548 cartridge/priming procedures, setting up the pump, charging the pump, navigation
- 549 through menus, bolus procedures including stopping a bolus, etc.
- The study team will assist the participant in study pump infusion site initiation and will start
 the participant on the study pump. The study pump will be programmed with the
 participant's usual basal rates and pump parameters. The participant's personal pump will be
- 553 removed.
- The participant will be supervised with the study pump during at least one meal or snack bolus to ensure participant understanding of the pump features.
- The participant will be encouraged to review the literature provided with the pump and infusion sets after the training is completed.
- 558 Blood Glucose and Ketone Testing
- 559 Participants will receive supplies for blood glucose and ketone testing.
- 560 Blood glucose testing
- Participants will be provided with a study blood glucose meter, test strips, and standard control solution to perform quality control (QC) testing at home per manufacturer guidelines.
- All study blood glucose meters will be QC tested with at least two different
 concentrations of control solution if available during all office visits. A tested meter
 will not be used in a study if it does not read within the target range at each
 concentration per manufacturer labeling. The participant will be instructed to contact
 study staff for a replacement of the meter, test strips, and control solution if a meter
 fails QC testing at home.
- Participants will be reminded to use the study blood glucose meter for all fingerstick
 BGs during the study.
- Participants will be given guidelines for treatment of low or high blood glucose.
- 573 Blood ketone testing
- Participants will be provided with a study blood ketone meter, test strips, and standard control solution to perform QC testing at home per manufacturer guidelines.
- All study blood ketone meters will be QC tested with at least two different
 concentrations of control solution if available during all office visits. A tested meter
 will not be used in a study if it does not read within the target range at each
 concentration per manufacturer labeling. The participant will be instructed to contact
 study staff for a replacement of the meter, test strips, and control solution if a meter
 fails QC testing at home.
- Participants will be instructed to perform blood ketone testing as described in section 6.2.4
- Participants will be given guidelines for treatment of elevated blood ketones

- Participants will be required to have a home glucagon emergency kit. Participants who currently do not have one will be given a prescription for the glucagon emergency kit. 585 •
- 586

587 Assessment of Successful Completion of the Run-in Phase

588 Enrolled participants will return approximately 14 days after the initiation of the run-in phase

589 to assess progress or successful completion of the phase. If needed, one or more interim visits or

590 phone contacts may occur to assist the participant with any system use issues. Visit procedures

- 591 will include the following:
- 592 • Assessment of compliance with the use of the CGM (and study pump if applicable)
- 593 Assessment of skin reaction in areas where a CGM sensor was worn •
- 594 Assessment of eligibility to continue to the RCT phase of the study •
- 595 The CGM data (and pump data if applicable) will be downloaded and reviewed. CGM-naïve
- 596 MDI participants who have completed an initial CGM-only use period without any safety issues
- 597 will be transitioned to a study pump as described above and will begin home use of CGM use
- 598 with study pump for approximately 14 days before returning to the clinic for another progress
- 599 assessment. MDI participants will be contacted by study staff within approximately 24hrs, 72hrs,
- 600 and 1 week after pump initiation to answer any questions related to device use prior to the 2
- 601 week visit. All subjects may have unlimited contact with the study team as needed.
- 602 To enter the randomized trial, participants must have obtained CGM readings on at least 11 out
- of the previous 14 days, and pump-naïve patients must have successfully used the study pump 603
- 604 each day. If a participant fails to meet these criteria, or if it is determined that the participant will
- 605 benefit from additional time with equipment training, the run-in period may be extended at the
- discretion of the investigator. One or two additional periods may occur, each a minimum of 11 606
- 607 days with a goal of at least 14 days, with another clinic visit to assess results after each period 608
- using the same criteria as above. The run-in duration will therefore vary from approximately 609 2 to 8 weeks, depending on the participant. Additional visits and phone contacts for further
- 610 training are at investigator discretion.
- 611 An assessment of CGM and pump knowledge will be made and the participant must demonstrate
- 612 sufficient competency to proceed to the RCT. The trainer and participant will review the
- 613 individual items listed on the pump training checklist to ensure competency.
- 614 Participants who are unable to meet the CGM or study pump compliance requirements will be
- 615 withdrawn from the study, as will participants who no longer meet all of the inclusion and 616 exclusion criteria.
- 617 If the participant is eligible to continue in the study, study staff will follow the procedure for
- 618 insulin pump optimization described below in section 3.2.

619 **3.2 Optimization of Insulin Pump Settings**

- 620 Data-driven optimization of pump settings will occur at the following times:
- 621 Prior to Randomization: •
- 622 • At the Run-in Review Visit
- 623 • Following Randomization:

- At the 2-, 13-, and 26-week visits for all study participants (both the CLC and SAP Group).
- If the study participant contacts the study physician due to concerns about their pump settings due to recurring hypo- or hyperglycemia.
- 628 Data will be obtained from CGM and/or pump downloads at the visit. Adjustments to pump
- 629 settings (basal rates, correction factor, insulin-to-carbohydrate ratio, etc.) will be made in
- 630 response to major trends observed in the CGM data, with flexibility for clinicians to adhere to
- 631 guidelines and practices established at each individual practice rather than a fixed set of
- 632 heuristics for all sites.

Chapter 4: Randomization Visit 633

634 **4.1 Randomization Visit**

635 The visit may occur on the same day as the Screening or Run-in Review Visit, or on a

636 subsequent day. If deferred, the randomization visit should occur no more than 14 days after 637 screening (if Run-in skipped) or successful completion of the run-in phase.

638 A urine pregnancy test will be repeated for all females of child-bearing potential if this visit is 639 not on the same day as the Screening Visit.

640 4.1.1 HbA1c

641 HbA1c will be measured using DCA Vantage or similar point-of-care (POC) device or local lab 642 if this visit is not on the same day as the Screening Visit. A blood sample also will be drawn to send to the central laboratory for baseline HbA1c determination to be used in outcome analyses. 643

644 4.1.2 Baseline C-Peptide Assessment

645 A blood sample will be drawn to send to the central laboratory for a random, non-fasting

646 C-peptide determination to characterize baseline residual insulin production. In conjunction,

blood glucose may be measured using the study blood glucose meter or a blood sample may be 647

drawn to send to the central laboratory for a blood glucose assessment. 648

- 649 4.1.3 Randomization
- 650 Eligible participants will be randomly assigned to one of two treatment groups in a 2:1 ratio:
- 651 1. CLC Closed-Loop Group
- 652 2. SAP Group

653 The participant's randomization group assignment is determined by completing a Randomization

654 Visit case report form on the study website. The randomization list will use a permuted block 655 design, stratified by clinical center.

- 656 The participant will be included in the data analysis regardless of whether or not the protocol
- for the assigned randomization group is followed. Thus, the investigator must not randomize a 657

658 participant until he/she is convinced that the participant/parent will accept assignment to either

- 659 of the two groups.
- 660 It was decided that it was more important to stratify randomization by site than by factors such 661 as baseline time in range, HbA1c, or device use since these factors will be easier to adjust for in analysis than will site in view of the relatively small number at each site. 662
- 663 4.1.4 Questionnaires

664 Participants will complete a set of baseline questionnaires, described in section 7.2, prior to

randomization. Participants assigned to the CLC group also will complete the Technology 665

666 Expectation Survey after randomization.

667 Chapter 5: Randomized Trial Procedures

668 **5.1 Procedures for the CLC Group**

6695.1.1 Study System Training

670 Participants assigned to the CLC group will receive study system training. These training

671 sessions can occur on the same day or extend to up to one additional day if needed within 1-7

672 days from randomization; participants will not take the study system home until training has

- 673 been completed.
- 674 For participants <18 years old, the parent/guardian will be trained on severe hypoglycemia
- 675 emergency procedures including removal of the study pump and administration of glucagon.
- The parent/guardian will be asked to attend any/all of the other training procedures.

677 Study System Training and Initiation

678 Study System Training

679 Participants will receive study system training by a qualified trainer. The study system includes

- the Tandem t:slim X2 with Control-IQ technology and associated Dexcom G6 CGM.
- 681 CGM training will include:
- The participant will be instructed and supervised on how to insert the sensor and transmitter.
- The participant will learn how to calibrate the CGM unit
- The participant will learn how to access the CGM trace via the t:slim X2 with Control-IQ user interface
- Participants will be asked to perform fingerstick blood glucose measurements in accordance with the labeling of the study CGM device
- 688 Pump training will include:

The participant will be fully instructed on the study insulin pump. A qualified system trainer will conduct the training and in particular discuss differences from their home pump in important aspects such as calculation of insulin on board and correction boluses. Additional topics not limited to but may include: infusion site initiation, cartridge/priming procedures, setting up the pump, charging the pump, navigation through menus, bolus procedures including stopping a bolus, etc.

- The study team will assist the participant in study pump infusion site initiation and will start
 the participant on the study pump. The study pump will be programmed with the
 participant's usual basal rates and pump parameters. The participant's personal pump will be
 removed.
- The participant will be supervised with the study pump during at least one meal or snack
 bolus to ensure participant understanding of the pump features.

- The participant will be encouraged to review the literature provided with the pump and infusion sets after the training is completed.
- 703 Pump training specific to the Control-IQ Technology functions will include:
- How to turn on and off Control-IQ technology.
- How to understand when Control-IQ is increasing or decreasing basal rates.
- How to administer a meal or correction bolus on the t:slim X2 with Control-IQ system
- What to do when exercising while using the system
- How to enable the sleep function and set the sleep schedule
- The participant will be assessed for understanding of the system interface and how to react to safety/alert messages.
- The participant will be given a User Guide as a reference.

712 System Initiation

- The participant will be instructed to use the system in closed-loop mode except 1) when no
- calibrated CGM sensor is available or 2) if insulin is delivered by any means other than the
- study pump (e.g. injection of subcutaneous insulin via syringe in the event of infusion site
- failure). If insulin is delivered by any means other than the study pump, participant will be
- 717 instructed to turn off Control-IQ for approximately four hours.
- The participant will also be instructed to contact study staff during periods of illness with an
- elevated temperature >101.5 degrees Fahrenheit (38.6 degrees Celsius), periods of significant
- 720 illness, or during periods of use of medications such as epinephrine for the emergency treatment
- of a severe allergic reaction or asthma attack in addition to use of oral or injectable
- glucocorticoids to determine if closed-loop use should be temporarily discontinued.
- For participants <18 years of age, the participant's parent/legal guardian will be required to
- 724 attend the training procedures.
- 725 Participants will be provided with sufficient supplies to last until the subsequent visit.
- 726 Participants will be provided with contact information and will be asked to call the study
- clinical staff for any health related issues and for technical issues with t:slim X2 with
- 728 Control-IQ. Participants may use the study pump without Control-IQ activated and study
- 729 CGM during periods of component disconnections or technical difficulties. Participants will
- also receive study staff contact information to ask any questions they may have during the study.

- 731 Study staff will discuss with the participant that routine contact is required and will make
- arrangements with the participant for the contacts. If the participant cannot be reached, the 732
- 733 participant's other contact methods will be utilized, including the emergency contact.
- 734 Participants who are not compliant with the arranged contacts on two separate occasions may
- 735 be discontinued at the discretion of the investigator.
- 736 Upon completion of the t:slim X2 with Control-IQ training, study staff will document, using a
- 737 checklist, that the participant is familiar with the function/feature and/or capable of performing 738 each of the tasks specified.
- 739 Participants will be provided Hypoglycemia, Hyperglycemia and Ketone Guidelines (section 6.2)
- for when their glucose levels are >300 mg/dL for more than two hours or >400 mg/dL at any 740 741 time or <70 mg/dL or ketones >0.6 mmol/L.
- 742 5.1.2 Home Use of the Study System

743 After training on the study system has been completed, participants will proceed with home use

744 (meaning free-living use at work, home, etc.) of the t:slim X2 with Control-IQ technology

- 745 system.
- 746 Participants may use available manufacturer-provided software and features of the study CGM
- 747 related to mobile data access or remote monitoring, but will be instructed not to use any third-
- 748 party components for this purpose.
- 749 5.1.3 Study Device Download
- 750 Participants will be instructed to download the study device prior to each phone visit or on at
- 751 least every 4 week basis throughout the remainder of the study.
- 752 5.1.4 1-Week Phone Contact
- 753 Study staff will perform a phone call with the participant within 7 (± 1) days following 754
- randomization.
- 755 The following will occur:
- 756 • Assessment of compliance with study device use by review of any available device data
- 757 • Assessment of adverse events, adverse device effects, and device issues
- 758 • Study staff will answer any questions related to device use
- 759 Participants will then complete an additional week of home use with the study system.
- 760 Participants will return to clinic 14 (± 3) days from the date of randomization.
- 761 5.1.5 2-Week Visit (Training Review and Insulin Pump Optimization)
- 762 The participant will be offered review training to address any questions on the use of the study 763 device including meal bolus strategies and strategies related to pump use and exercise.

- 764 The following will occur:
- 765 Assessment of compliance with study device use by review of any available device data •
- 766 • Assessment of adverse events, adverse device effects, and device issues
- 767 • Study staff will answer any questions related to device use and follow the procedure for insulin pump optimization described in section 3.2 using the study CGM available data from 768 769 the previous two weeks.
- 770 • The study blood glucose meter and study ketone meter will be downloaded and QC tested 771 with at least two different concentrations of control solution if available.
- 772 **5.2 Procedures for the SAP Group**

773 Participants in the SAP group will use an insulin pump with no automated insulin delivery in

conjunction with the study CGM, study blood glucose meter and study ketone meter. Participants 774

775 not already using an insulin pump with no automated insulin delivery at enrollment will be

- 776 provided with a study pump to use. Study pump training and/or study CGM training will be
- provided if the participant is initiating use of these devices at this point. 777

778 Participants may use available manufacturer-provided software and features of the study CGM

779 related to mobile data access or remote monitoring, but will be instructed not to use any third-

- 780 party components for this purpose.
- 781 5.2.1 Study Device Data Download

782 Participants will be instructed to upload data from the study CGM using commercially available

783 software prior to the 1-week phone contact and prior to the 2-week clinic visit for clinician

784 review. Participants will be provided with any software and hardware needed to perform these 785

data uploads.

786 5.2.2 1-Week Phone Contact

- 787 Study staff will perform a phone call with the participant within 7 (± 1) days following
- 788 randomization.
- 789 The following will occur:
- 790 • Assessment of compliance with study device use by review of any available device data
- 791 • Assessment of adverse events, adverse device effects, and device issues
- 792 • Study staff will answer any questions related to device use
- 793 The participant will continue on SAP for a second week, then return to the clinic 14 (± 3) days from the date of randomization. 794
- 795 5.2.3 2-Week Visit (Training Review and Insulin Pump Optimization)

796 The participant will be offered review training on the use of SAP during the remainder of the

797 study, including meal bolus strategies and strategies related to pump use and exercise.

- 798 The following will occur:
- Assessment of compliance with study device use by review of any available device data
- Assessment of adverse events, adverse device effects, and device issues
- Study staff will review uploaded CGM data, answer any questions related to device use, and follow the procedure for insulin pump optimization described in section 3.2.
- The study blood glucose meter and study ketone meter will be downloaded and QC tested
 with at least two different concentrations of control solution if available.
- The participant will be instructed to upload data from the CGM at least once every 4 weeks for the remainder of the study.
- 807

5.3 Follow-up Visits and Phone Contacts for Both Groups

808 The schedule for remaining follow-up visits and phone contacts is the same for both treatment

groups. Study staff will discuss with the participant that periodic contact is required and will make arrangements with the participant for the contacts. If the participant (or parent/guardian,

for participants less than 18 years old) cannot be reached, the participant's other contact methods

- 812 will be utilized, including the emergency contact.
- 813 **5.3.1 Follow-up Visits**
- 814 Follow-up visits in clinic will occur at:
- 815 6 weeks (±1 week)
- 816 13 weeks (±1 week)
- 817 26 weeks (±1 week)
- 818

5.3.1.1 Procedures at Follow-up Visits

- 819 <u>Procedures performed in both groups at each visit, unless otherwise specified below:</u>
- Assessment of compliance with study device use by review of any available device data
- Assessment of adverse events, adverse device effects, and device issues
- Download of device data (study system or personal pump and study CGM, study BG meter, study ketone meter)
- 824 Procedures Specific to the 13- and 26-Week Visit
- HbA1c determination using the DCA Vantage or similar point of care device
- Collection of a blood sample to send to the central laboratory for HbA1c determination
- 827 Completion of questionnaires
- Weight measurement will be repeated, in addition to height for participants <21 years old
- Insulin Pump Optimization as described above

830 5.3.2 Phone Contacts

831 In addition to the 1-week phone contact described above for the respective treatment groups, the 832 following phone contacts will be made:

- 4 weeks (±3 days)
- 9 weeks (±3 days)
- 17 weeks (±3 days)
- 21 weeks (±3 days)
- 837 At each phone contact the following procedures are performed in both treatment groups:
- Review of available CGM and/or system data to identify any safety issues associated with
 insulin pump settings and current diabetes management approach
- Assessment of adverse events, adverse device effects, and device issues
- 841 Additional phone contacts may be performed as needed.

842**5.4 Early Termination Visit (If Applicable)**

Participants will be asked to come for an end of study visit in the event of withdrawal or earlytermination.

845 **5.5 Unscheduled Visits**

- 846 Participants may have unscheduled visits during the study period if required for additional device
- training or other unanticipated needs per the study investigator discretion.

848 **5.6 Participant Access to Study Device at Study Closure**

- 849 Participant will return all investigational study devices and supplies (insulin pump, CGM and
- related supplies) at study closure. Participant may keep the study ketone meter and study
- 851 glucometer if these devices are not marked for investigational use only.

852	Chapter 6: Study Devices				
853	6.1 Description of the Investigational Device				
854	6.1.1 Insulin Pump				
855	The study system will include the Tandem t:slim X2 with Control-IQ technology.				
856	6.1.2 Continuous Glucose Monitoring				
857 858 859 860	The study CGM will include Dexcom G6 transmitter and sensors when using the Tandem t:slim X2 with Control-IQ technology. This may not be an FDA-approved device system at the start of the study, but may become approved during the course of the study. The CGM sensor will be replaced at least once every 10 days.				
861	6.1.3 Blood Glucose Meter and Strips				
862 863 864	Blood glucose levels will be measured using the study-assigned blood glucose meter (glucometer) and the CGM device will be calibrated if needed using the study glucometer and strips in accordance with the manufacturer's labeling.				
865	6.1.4 Ketone Meter and Strips				
866 867 868	Blood ketone levels will be measured using the Abbott Precision Xtra meter and strips in accordance with the manufacturer's labeling. The blood glucose meter component of the Precision Xtra device will not be used.				
869	6.1.5 Study Device Accountability Procedures				
870	Device accountability procedures will be detailed in the site procedures manual.				
871	6.1.6 Blood Glucose Meter Testing				
872 873	• Participants will be provided with instructions to perform QC testing per manufacturer guidelines.				
874 875 876 877 878	• All study blood glucose meters will be QC tested with at least two different concentrations of control solution if available during all office visits. A tested meter will not be used in a study if it does not read within the target range at each concentration per manufacturer labeling. The participant will be instructed to contact study staff for a replacement of the meter, test strips, and control solution if a meter fails QC testing at home.				
879 880	• Participants will be reminded to use the study blood glucose meter for all fingerstick blood glucose measurements.				
881 882	• Participants will be asked to perform fingerstick blood glucose measurements in accordance with the labelling of the study CGM device.				
883	6.1.7 Blood Ketone Testing				
884	• Participants to perform QC testing at home per manufacturer guidelines.				
885 886	• All study blood ketone meters will be QC tested with at least two different concentrations of control solution if available during all office visits. A tested meter will not be used in a study				

- if it does not read within the target range at each concentration per manufacturer labeling.
- 888 The participant will be instructed to contact study staff for a replacement of the meter, test 889 strips, and control solution if a meter fails QC testing at home.
- Participants will be instructed on how to perform blood ketone testing.
- Participants will be given guidelines for treatment of elevated blood ketones.
- 892 **6.2 Safety Measures**
- 893 6.2.1 CGM Calibration
- Throughout the study, participants will be instructed to calibrate the study CGM in accordance with manufacturer labelling.
- 896 **6.2.2 System Failure**
- 897 If the CGM signal becomes unavailable for more than 20 minutes consecutively, Control-IQ or
- closed loop will not operate to automatically adjust insulin. If the CGM is not connected, the

system will revert to usual function of the pump and deliver insulin with the insulin dosing

900 parameters programmed in the system for that individual. Resumption of Closed-Loop will

- 901 occur automatically once CGM signal is available again.
- 902 If the study system is unable to activate Control-IQ for any reason, the pump will automatically 903 revert to preprogrammed basal insulin delivery without any need for instruction from the user.
- 904 If the t:slim X2 detects a system error that does not allow the pump to operate, the Malfunction
- Alarm will display and the participant will be instructed to contact Tandem Technical Support
- 906 via the study team.

907 **6.2.3 Hypoglycemia Threshold Alert and Safety Protocol**

908 During the course of the study, participants will be permitted to change the CGM low glucose

- 909 threshold alert setting on their device or mobile app, but will be instructed to choose a value no 910 less than 60 mg/dL.
- 911 The t:slim X2 with Control-IQ system will issue a predictive hypoglycemia alert (Control-IQ
- 912 Low Alert) when the system predicts BG <70 mg/dL within the next 15 minutes (<80 mg/dL
- 913 when exercise mode is activated).
- 914 If the participant receives a Control-IQ Low Alert, a message appears on the user interface (UI)
- that is accompanied by vibration followed by vibrations and/or sound if not acknowledged by the
- 916 user in 5 minutes. This alert remains on the screen until acknowledged by the user. The user is
- 917 prompted to test blood sugar and treat with carbs.
- 918 6.2.4 Hyperglycemia Threshold Alert and Safety Protocol
- 919 During the course of the study, participants will be permitted to change the CGM high glucose
- 920 threshold alert setting on their device or mobile app, but will be instructed to choose a value no 921 greater than 300 mg/dL.

- 922 The t:slim X2 with Control-IQ system will issue a predictive hyperglycemia alert (Control-IQ
- High Alert) when the system has increased insulin delivery, but detects a CGM value above 200
- 924 mg/dL and does not predict the value will decrease in the next 30 minutes.
- 925 If the participant receives a Control-IQ High Alert, a message appears on the UI that is
- accompanied by vibration followed by vibrations and/or sound if not acknowledged by the user
- 927 in 5 minutes. This alert remains on the screen until acknowledged by the user. The user is
- 928 prompted to check the site for occlusion and test blood glucose.
- 929 If a participant's CGM reading is >300 mg/dL for over 2 hours or $\ge 400 \text{ mg/dL}$ at any point, the 930 participant will be instructed to take the following steps:
- Perform a blood glucose meter check.
- If the blood glucose is >300 mg/dL, check for blood ketones with the study ketone meter.
- If the ketone level is >0.6 mmol/L, take correction insulin, change insulin (pump) infusion site and contact study staff.
- If a participant administers correction insulin via insulin syringe, participants will be instructed to turn Control-IQ off for approximately four hours.

937 **Chapter 7: Testing Procedures and Questionnaires**

938 7.1 Laboratory Testing

- 939 1. HbA1c:
- Performed locally at the Screening visit, Randomization visit, 13-week visit, and 26-week
 visit. The Screening visit test may be skipped if a local test result is already available within
 the prior 2 weeks.
- A blood sample will be obtained and sent to central lab at the Randomization visit, 13-week visit, and 26-week visit.
- 945 2. Urine Pregnancy:
- Performed locally for females of child-bearing potential at the Screening visit,
 Randomization visit, and 13-week visit. This will also be done anytime pregnancy is
 suspected.

949 7.2 Questionnaires

- 950 Questionnaires are completed at the Randomization Visit, Week 13 Visit, and Week 26 Visit.
- 951 The questionnaires are described briefly below. The procedures for administration are described 952 in the study procedures manual.
- 953 The following questionnaires will be completed at the randomization visit:
- Diabetes Specific Personality Questionnaire
- 955 Clarke's Hypoglycemia Awareness Scale
- Fear of Hypoglycemia Survey (HFS-II)
- 957 Hyperglycemia Avoidance Scale
- 958 Hypoglycemia Confidence Scale
- 959 Diabetes Distress Scale
- 960 INSPIRE Survey
- 961 Technology Expectations Survey (Closed-Loop participants only at randomization; SAP
 962 group will complete this survey at week 26 prior to starting closed-loop control)
- 963 The following questionnaires will be completed at the Week 13 and Week 26 Visits:
- Clarke's Hypoglycemia Awareness Scale
- 965 Fear of Hypoglycemia Survey (HFS-II)
- 966 Hyperglycemia Avoidance Scale
- 967 Hypoglycemia Confidence Scale
- 968 Diabetes Distress Scale

- 969 INSPIRE Survey
- Technology Acceptance Survey (*Closed-Loop participants only*)
- System Usability Scale (SUS) (*Closed-Loop participants only*)

972 Diabetes Specific Personality Questionnaire

973 The Diabetes Specific Personality Questionnaire (26) is based on the original Six Factor

974 Personality Questionnaire (27), a well-validated measure that was adapted for the diabetes-

975 specific version of the questionnaire. The SFPQ is a measure of six personality dimensions

each consisting of three facet scales, measured by 108 Likert items. The SFPQ facet scales are

- 977 organized in terms of six factor scales.
- 978 Administration time is approximately 15 minutes.

979 Clarke's Hypoglycemia Awareness Scale

980 The scale (28) comprises eight questions characterizing the participant's exposure to episodes

981 of moderate and severe hypoglycemia. It also examines the glycemic threshold for, and

982 symptomatic responses to hypoglycemia. A score of four or more on a scale of 0 to 7 implies

- 983 impaired awareness of hypoglycemia.
- 984 Administration time is approximately 5 minutes.

985 Hypoglycemia Fear Survey (HFS-II)/Low Blood Sugar Survey

986 The Hypoglycemia Fear Survey-II (29) was developed to measure behaviors and worries related

to fear of hypoglycemia in adults with type 1 diabetes. It is composed of 2 subscales, the

988 Behavior (HFS-B) and Worry (HFS-W). HFS-B items describe behaviors in which patients may

989 engage to avoid hypoglycemic episodes and/or their negative consequences (e.g., keeping blood

glucose levels above150 mg/dL, making sure other people are around, and limiting exercise or

- 991 physical activity). HFS-W items describe specific concerns that patients may have about their
- hypoglycemic episodes (e.g., being alone, episodes occurring during sleep, or having an
- 993 accident).
- Administration time is approximately 10 minutes.

995 Hyperglycemia Avoidance Survey (HAS)/High Blood Sugar Survey

- 996 The HAS (30) reliably quantifies affective and behavioral aspects of hyperglycemia avoidance
- and is used to assess the extent of potentially problematic avoidant attitudes and behaviors
- regarding hyperglycemia in people with Type 1 diabetes (T1D).
- Administration time is approximately 10 minutes.

1000 Hypoglycemia Confidence Scale

- 1001 The HCS (31) is a 9-item self-report scale that examines the degree to which people with
- 1002 diabetes feel able, secure, and comfortable regarding their ability to stay safe from
- 1003 hypoglycemic-related problems. It has been validated for use in adults with type 1 diabetes and
- 1004 insulin-using type 2 diabetes.
- 1005 Administration time is approximately 5 minutes.

1006 **Diabetes Distress Scale**

- 1007 The Diabetes Distress Scale (32) is a measure of diabetes-related emotional distress and consists
- 1008 of a scale of 28 items. These include 7 items from each of four domains central to diabetes-
- 1009 related emotional distress. Patients rate the degree to which each item is currently problematic
- 1010 for them on a 6-point Likert scale, from 1 (no problem) to 6 (serious problem).
- 1011 Administration time is approximately 10 minutes.

1012 Technology Expectation and Technology Acceptance Surveys

- 1013 The Technology Expectation and Technology Acceptance Surveys were developed for a Bionic
- 1014 Pancreas camp study (33). The 38 items in the Questionnaire were based on interviews
- 1015 conducted with individuals who had participated in previous Bionic Pancreas trials about their
- 1016 experience regarding the Bionic Pancreas. It was subsequently adapted to assess these same
- 1017 measures for the inControl closed-loop system. It assesses both positive and negative
- 1018 experiences with inControl, including blood glucose management, device burden, and overall
- 1019 satisfaction. Items were rated on a 5-point scale.
- 1020 Administration time is approximately 10 minutes.

1021 INSPIRE Survey

- 1022 The INSPIRE (Insulin Delivery Systems: Perceptions, Ideas, Reflections and Expectations)
- 1023 survey was developed to assess various aspects of a user's experience regarding automated
- 1024 insulin delivery for both patients and family members. The surveys include various topics
- important to patients with type 1 diabetes and their family members based upon >200 hours
- 1026 of qualitative interviews and focus groups. The adult survey includes 31 items; the adolescent
- survey includes 28 items; and the parent survey includes 30 items. Response options for all
- surveys include a 5-point Likert scale from strongly agree to strongly disagree, along with an
- 1029 N/A option.
- 1030 Administration time is approximately 5 minutes.

1031 System Usability Scale (SUS)

- 1032 The System Usability Scale (SUS) is a 10-item questionnaire that measures the overall
- 1033 usability of a system. It is a valid and reliable measure of the perceived usability of a system
- 1034 and is technology-agnostic. The questionnaire presents statements with five response options
- 1035 (anchoring the options from strongly disagree to strongly agree) and asks users to rate their
- agreement to the statements. User scores are transformed into a composite score, from 0 to 100,
- and this score is taken as an overall measure of the system's usability; higher scores indicate
- 1038 better perceived usability.
- 1039 Administration time is approximately 5 minutes.

1040 Chapter 8: Adverse Events, Device Issues, and Stopping Rules

8.1 Adverse Events

8.1.1 Definitions

1043 <u>Adverse Event (AE):</u> Any untoward medical occurrence in a study participant, irrespective of the

relationship between the adverse event and the device(s) under investigation (see section 8.1.2

- 1045 for reportable adverse events for this protocol).
- 1046 <u>Serious Adverse Event (SAE)</u>: Any untoward medical occurrence that:
- 1047 Results in death.
- Is life-threatening; (a non-life-threatening event which, had it been more severe, might have become life-threatening, is not necessarily considered a serious adverse event).
- Requires inpatient hospitalization or prolongation of existing hospitalization.
- Results in persistent or significant disability/incapacity or substantial disruption of the ability to conduct normal life functions (sight threatening).
- Is a congenital anomaly or birth defect.
- Is considered a significant medical event by the investigator based on medical judgment (e.g., may jeopardize the participant or may require medical/surgical intervention to prevent one of the outcomes listed above).
- 1057 <u>Unanticipated Adverse Device Effect (UADE)</u>: Any serious adverse effect on health or safety or
- any life-threatening problem or death caused by, or associated with, a device, if that effect,

1059 problem, or death was not previously identified in nature, severity, or degree of incidence in the

1060 investigational plan or application (including a supplementary plan or application), or any other

- 1061 unanticipated serious problem associated with a device that relates to the rights, safety, or
- 1062 welfare of participants (21 CFR 812.3(s)).
- 1063 <u>Adverse Device Effect (ADE):</u> Any untoward medical occurrence in a study participant which 1064 the device may have caused or to which the device may have contributed (Note that an Adverse
- 1065 Event Form is to be completed in addition to a Device Deficiency or Issue Form).
- 1066 <u>Device Complaints and Malfunctions:</u> A device complication or complaint is something that
- 1067 happens to a device or related to device performance, whereas an adverse event happens to a
- 1068 participant. A device complaint may occur independently from an AE, or along with an AE.
- 1069 An AE may occur without a device complaint or there may be an AE related to a device
- 1070 complaint. A device malfunction is any failure of a device to meet its performance specifications
- 1071 or otherwise perform as intended. Performance specifications include all claims made in the
- 1072 labeling for the device. The intended performance of a device refers to the intended use for
- 1073 which the device is labeled or marketed. (21 CFR 803.3). Note: for reporting purposes, sites
- 1074 will not be asked to distinguish between device complaints and malfunctions.

1075 **8.1.2 Reportable Adverse Events**

- 1076 For this protocol, a reportable adverse event includes any untoward medical occurrence that 1077 meets one of the following criteria:
- 1078 1. A serious adverse event
- 10792. An Adverse Device Effect as defined in section 8.1.1, unless excluded from reporting in section 8.2
- 1081 3. An Adverse Event occurring in association with a study procedure
- 1082 4. Hypoglycemia meeting the definition of severe hypoglycemia as defined below
- 1083 5. Diabetic ketoacidosis (DKA) as defined below or in the absence of DKA, a hyperglycemic or
 1084 ketosis event meeting the criteria defined below
- 1085 Hypoglycemia and hyperglycemia not meeting the criteria below will not be recorded as adverse
- 1086 events unless associated with an Adverse Device Effect. Skin reactions from sensor placement 1087 are only reportable if severe and/or required treatment.
- 1088 Pregnancy occurring during the study will be recorded.

1089 8.1.2.1 Hypoglycemic Events

- 1090 Hypoglycemia not associated with an Adverse Device Effect is only reportable as an adverse
- 1091 event when the following definition for severe hypoglycemia is met: the event required
- 1092 assistance of another person due to altered consciousness, and required another person to actively
- administer carbohydrate, glucagon, or other resuscitative actions. This means that the participant
- 1094 was impaired cognitively to the point that he/she was unable to treat himself/herself, was unable
- 1095 to verbalize his/ her needs, was incoherent, disoriented, and/or combative, or experienced seizure
- 1096 or coma. These episodes may be associated with sufficient neuroglycopenia to induce seizure or
- 1097 coma. If plasma glucose measurements are not available during such an event, neurological
 1098 recovery attributable to the restoration of plasma glucose to normal is considered sufficient
- 1099 evidence that the event was induced by a low plasma glucose concentration.
- 1100 8.1.2.2 Hyperglycemic Events/Diabetic Ketoacidosis
- 1101 Hyperglycemia not associated with an Adverse Device Effect is only reportable as an adverse 1102 event when one of the following 4 criteria is met:
- the event involved DKA, as defined by the Diabetes Control and Complications Trial
 (DCCT) and described below
- evaluation or treatment was obtained at a health care provider facility for an acute event involving hyperglycemia or ketosis
- blood ketone level ≥1.0 mmol/L and communication occurred with a health care provider at the time of the event
- blood ketone level \geq 3.0 mmol/L, even if there was no communication with a health care provider

- 1111 Hyperglycemic events are classified as DKA if the following are present:
- Symptoms such as polyuria, polydipsia, nausea, or vomiting;
- Serum ketones >1.5 mmol/L or large/moderate urine ketones;
- Either arterial blood pH <7.30 or venous pH <7.24 or serum bicarbonate <15; and
- 1115 Treatment provided in a health care facility

1116 All reportable Adverse Events—whether volunteered by the participant, discovered by study

1117 personnel during questioning, or detected through physical examination, laboratory test, or other

1118 means—will be reported on an adverse event form online. Each adverse event form is reviewed

1119 by the Medical Monitor to verify the coding and the reporting that is required.

1120

8.1.3 Relationship of Adverse Event to Study Device

1121 The study investigator will assess the relationship of any adverse event to be related or unrelated

by determining if there is a reasonable possibility that the adverse event may have been caused

- 1123 by the study device.
- 1124 To ensure consistency of adverse event causality assessments, investigators should apply the
- following general guideline when determining whether an adverse event is related:
- 1126 <u>Yes</u>

1127 There is a plausible temporal relationship between the onset of the adverse event and the study

1128 intervention, and the adverse event cannot be readily explained by the participant's clinical state,

- 1129 intercurrent illness, or concomitant therapies; and/or the adverse event follows a known pattern
- 1130 of response to the study intervention; and/or the adverse event abates or resolves upon
- 1131 discontinuation of the study intervention or dose reduction and, if applicable, reappears upon
- 1132 re-challenge.
- 1133 <u>No</u>
- 1134 Evidence exists that the adverse event has an etiology other than the study intervention (e.g.,
- 1135 preexisting medical condition, underlying disease, intercurrent illness, or concomitant
- 1136 medication); and/or the adverse event has no plausible temporal relationship to study
- 1137 intervention.

1138 8.1.4 Intensity of Adverse Event

1139 The intensity of an adverse event will be rated on a three point scale: (1) mild, (2) moderate, or

- 1140 (3) severe. It is emphasized that the term severe is a measure of intensity: thus a severe adverse
- 1141 event is not necessarily serious. For example, itching for several days may be rated as severe,
- 1142 but may not be clinically serious.
- MILD: Usually transient, requires no special treatment, and does not interfere with the participant's daily activities.

- MODERATE: Usually causes a low level of inconvenience or concern to the participant and may interfere with daily activities, but is usually ameliorated by simple therapeutic measures.
- SEVERE: Interrupts a participant's usual daily activities and generally requires systemic drug therapy or other treatment.

1149 **8.1.5 Coding of Adverse Events**

- 1150 Adverse events will be coded using the MedDRA dictionary. The Medical Monitor will review
- the investigator's assessment of causality and may agree or disagree. Both the investigator's and
- 1152 Medical Monitor's assessments will be recorded. The Medical Monitor will have the final say in
- 1153 determining the causality.
- 1154 Adverse events that continue after the participant's discontinuation or completion of the study
- 1155 will be followed until their medical outcome is determined or until no further change in the
- 1156 condition is expected.

1157 **8.1.6 Outcome of Adverse Event**

- 1158 The outcome of each reportable adverse event will be classified by the investigator as follows:
- RECOVERED/RESOLVED The participant recovered from the AE/SAE without sequelae.
 Record the AE/SAE stop date.
- RECOVERED/RESOLVED WITH SEQUELAE The event persisted and had stabilized without change in the event anticipated. Record the AE/SAE stop date.
- FATAL A fatal outcome is defined as the SAE that resulted in death. Only the event that was the cause of death should be reported as fatal. AEs/SAEs that were ongoing at the time of death; however, were not the cause of death, will be recorded as "resolved" at the time of death.
- NOT RECOVERED/NOT RESOLVED (ONGOING) An ongoing AE/SAE is defined as the event was ongoing with an undetermined outcome.
- An ongoing outcome will require follow-up by the site in order to determine the final outcome of the AE/SAE.
- The outcome of an ongoing event at the time of death that was not the cause of death, will be updated and recorded as "resolved" with the date of death recorded as the stop date.
- UNKNOWN An unknown outcome is defined as an inability to access the participant or
 the participant's records to determine the outcome (for example, a participant that was lost to
 follow-up).
- 1177 All clinically significant abnormalities of clinical laboratory measurements or adverse events
- 1178 occurring during the study and continuing at study termination should be followed by the
- 1179 participant's physician and evaluated with additional tests (if necessary) until diagnosis of the
- 1180 underlying cause, or resolution. Follow-up information should be recorded on source
- 1181 documents.
- 1182 If any reported adverse events are present when a participant completes the study, or if a
- 1183 participant is withdrawn from the study due to an adverse event, the participant will be contacted
- 1184 for re-evaluation within 2 weeks. If the adverse event has not resolved, additional follow-up will
- be performed as appropriate. Every effort should be made by the Investigator or delegate to
- 1186 contact the participant until the adverse event has resolved or stabilized.

1187 8.2 Reportable Device Issues

- 1188 All UADEs, ADEs, device complaints, and device malfunctions will be reported irrespective of 1189 whether an adverse event occurred, except in the following circumstances.
- 1190 The following device issues are anticipated and will not be reported on a Device Issue Form but 1191 will reported as an Adverse Event if the criteria for AE reporting described above are met:
- 1192 Component disconnections
- CGM sensors lasting fewer than the number of days expected per CGM labeling
- CGM tape adherence issues
- Pump infusion set occlusion not leading to ketosis
- Battery lifespan deficiency due to inadequate charging or extensive wireless communication
- Intermittent device component disconnections/communication failures not leading to system
 replacement
- Device issues clearly addressed in the user guide manual that do not require additional troubleshooting
- Skin reactions from CGM sensor placement or pump infusion set placement that do not meet criteria for AE reporting
- 1203 8.3 Pregnancy Reporting
- 1204 If pregnancy occurs, the participant will be discontinued from the study. The occurrence of 1205 pregnancy will be reported on an AE Form.
- 1206 **8.4 Timing of Event Reporting**
- SAEs and UADEs must be reported to the Coordinating Center within 24 hours via completionof the online serious adverse event form.
- 1209 Other reportable adverse events, device malfunctions (with or without an adverse event), and
- device complaints should be reported promptly by completion of an electronic case report form,but there is no formal required reporting period.
- 1212 The Coordinating Center will notify all participating investigators of any adverse event that is
- serious, related, and unexpected. Notification will be made within 10 days after the CoordinatingCenter becomes aware of the event.
- 1215 Each principal investigator is responsible for reporting serious study-related adverse events and
- 1216 abiding by any other reporting requirements specific to his/her Institutional Review Board or
- 1217 Ethics Committee.
- 1218 Upon receipt of a UADE report, the Sponsor will investigate the UADE and if indicated, report
- 1219 the results of the investigation to the sites' IRBs, and the FDA within 10 working days of the
- 1220 Sponsor becoming aware of the UADE per 21CFR 812.46(b) (2). The Medical Monitor must
- 1221 determine if the UADE presents an unreasonable risk to participants. If so, the Medical Monitor

- 1222 must ensure that all investigations, or parts of investigations presenting that risk, are terminated
- as soon as possible but no later than 5 working days after the Medical Monitor makes this
- 1224 determination and no later than 15 working days after first receipt notice of the UADE.
- 1225 In the case of a device system component malfunction (e.g. pump, CGM, control algorithm),
- information will be forwarded to the responsible company by the site personnel, to be handled by its complaint management system.
- 1228 **8.5 Stopping Criteria**

1229 8.5.1 Participant Discontinuation of Study Device

- 1230 Rules for discontinuing study device use are described below.
- The investigator believes it is unsafe for the participant to continue on the intervention. This could be due to the development of a new medical condition or worsening of an existing condition; or participant behavior contrary to the indications for use of the device that imposes on the participant's safety
- The participant requests that the treatment be stopped
- 1236 Participant pregnancy

1242

- 1237 Two distinct episodes of DKA
- Two distinct severe hypoglycemia events as defined in section 8.1.2.1
- 1239 If pregnancy occurs, the participant will be discontinued from the study entirely. Otherwise, even
- 1240 if the study device system is discontinued, the participant will be encouraged to remain in the
- 1241 study through the final study visit.

8.5.2 Criteria for Suspending or Stopping Overall Study

- 1243 In the case of an unanticipated system malfunction resulting in a severe hypoglycemia or severe
- hyperglycemia event (as defined in section 8.1.2.2), use of the study device system will be
- 1245 suspended while the problem is diagnosed.

- 1246 In addition, study activities could be similarly suspended if the manufacturer of any constituent
- 1247 study device requires stoppage of device use for safety reasons (e.g. product recall). The
- affected study activities may resume if the underlying problem can be corrected by a protocol or
- 1249 system modification that will not invalidate the results obtained prior to suspension. The study
- 1250 Medical Monitor will review all adverse events and adverse device events that are reported
- during the study and will review compiled safety data at periodic intervals (generally timed tothe review of compiled safety data by the DSMB). The Medical Monitor may request suspension
- 1252 of study activities or stoppage of the study if deemed necessary based on the totality of safety
- 1255 of study activities of stoppage of the study if deemed necessary based on the totality of safety 1254 data available

1255 **8.6 Independent Safety Oversight**

- 1256 A Data and Safety Monitoring Board (DSMB) will review compiled safety data at periodic
- 1257 intervals (typically every 6 months). In addition, the DSMB will review all DKA and severe
- 1258 hypoglycemia irrespective of relatedness to study device use, and all serious events (including
- 1259 UADEs) related to study device use at the time of occurrence. The DSMB also will be informed
- 1260 of any ADEs not meeting criteria for a UADE if the Medical Monitor requests the DSMB
- review. The DSMB can request modifications to the study protocol or suspension or outright
- stoppage of the study if deemed necessary based on the totality of safety data available. Details
- regarding DSMB review will be documented in a separate DSMB document.

8.7 Risks

1264

- 1265 The potential risks associated with use of the study device are described in section 1.3.
- 1266 Additional risks are minor and/or infrequent and include:
- Pain, bruising, redness, or infection from blood draws
- 1268 Loss of confidentiality
- Stress from completing quality of life questionnaires

1270 Chapter 9: Miscellaneous Considerations

9.1 Drugs Used as Part of the Protocol

1272 Participants will use either lispro or aspart insulin prescribed by their personal physician.

1273

9.2 Prohibited Medications, Treatments, and Procedures

Participants using glulisine at the time of enrollment will be asked to contact their personal
physician to change their prescribed personal insulin to lispro or aspart for the duration of the
trial.

- 1277 Treatment with any non-insulin glucose-lowering agent (including GLP-1 agonists, Symlin,
- 1277 DPP-4 inhibitors, SGLT-2 inhibitors, biguanides, sulfonylureas and naturaceuticals) will not be 1279 permitted.
- 1280 The investigational study devices (t:slim X2 insulin pump, study CGM systems) must be
- 1281 removed before Magnetic Resonance Imaging (MRI), Computed Tomography (CT) or diathermy
- 1282 treatment. Participants may continue in the trial after temporarily discontinuing use if requiring
- 1283 one of the treatments above.

1284 9.3 Participant Compensation

- 1285 Participant compensation will be specified in the informed consent form.
- 1286 A maximum of \$375 will be paid for completing the entire study. Participants will be paid \$100
- 1287 for completing 13- and 26-week visits and \$50 for each separate scheduled visit that requires
- traveling to the research site. No additional payments will be provided for unplanned visits tothe research site.
- Screening Visit: \$25
- Run-in Visit/Randomization Visit: \$50
- 1292 2-week Visit: \$50
- 1293 6-week Visit: \$50
- 1294 13-week Visit: \$100
- 1295 26-week Visit: \$100

1296 **9.4 Participant Withdrawal**

- 1297 Participation in the study is voluntary, and a participant may withdraw at any time.
- 1298 For participants who withdraw, their data will be used up until the time of withdrawal.

1299 **9.5 Confidentiality**

- 1300 For security and confidentiality purposes, participants will be assigned an identifier that will
- 1301 be used instead of their name. Protected health information gathered for this study will be
- shared with the coordinating center, the Jaeb Center for Health Research in Tampa, FL.
- 1303 De-identified participant information may also be provided to research sites involved in the

- study. De-identified participant information may also be provided to Tandem for system evaluation purposes. 1304
- 1305

1306Chapter 10: Statistical Consideration

130710.1 Statistical and Analytical Plans

1308 The approach to sample size and statistical analyses are summarized below. A detailed statistical

analysis plan will be written and finalized prior to the first tabulation of data by treatment group
(ie, for DSMB review). The analysis plan synopsis in this chapter contains the framework of the
anticipated final analysis plan.

1312 **10.2 Statistical Hypotheses**

- The primary outcome for this study (6-month randomized trial) is CGM-measured % in range70-180 mg/dL.
- 1315 The hypotheses for the primary outcome are:
- 1316a. Null Hypothesis: There is no difference in mean CGM-measured % in range 70-1801317mg/dL over 6 months between SAP and CLC
- b. *Alternative Hypothesis*: The mean CGM-measured % in range 70-180 mg/dL over 6
 months is different for SAP and CLC.

1320 **10.3 Sample Size**

- 1321 Sample size has been computed for the primary outcome (CGM-measured % in range 70-180
- 1322 mg/dL). Data from the CGM arm of the JDRF CGM RCT from participants meeting the

eligibility criteria for the current trial were used to project the distribution of % in range 70-180

- 1324 mg/dL as measured by CGM for the SAP group in the proposed study.
- The total minimum sample size was computed to be 123 for the following assumptions: (1) 2:1 [CLC:SAP] randomization, (2) 90% power, (3) a 7.5% absolute increase in % in range 70-180
- mg/dL, (4) an effective SD of 12%, (5) and 2-sided type 1 error of 5%.
- 1328 The total sample size has been increased to 168 to account for dropouts and to increase the
- 1329 number of participants who will be exposed to the CLC system for an enhanced safety and
- 1330 feasibility assessment.
- 133110.4 Outcome Measures
- 1332 **10.4.1 Primary Efficacy Endpoint**
- CGM-measured % in range 70-180 mg/dL

1334	10.4.2 Secondary Efficacy Endpoints					
1335	10.4.2.1 Secondary Efficacy Endpoints Included in Hierarchical Analysis					
1336 1337	The following secondary endpoints will be tested in a hierarchical fashion as described in section 10.7.1.					
1338	• CGM-measured % above 180 mg/dL					
1339	CGM-measured mean glucose					
1340	• HbA1c at 26 weeks					
1341	• CGM-measured % below 70 mg/dL					
1342	• CGM-measured % below 54 mg/dL					
1343	10.4.2.2 Other Secondary Efficacy Endpoints					
1344 1345 1346	The following endpoints are considered exploratory. Type 1 error for these endpoints will be controlled using the false discovery rate (FDR) instead of the familywise error rate (FWER). See section 10.15 below.					
1347	<u>CGM-Measured:</u>					
1348	• % in range 70-140 mg/dL					
1349	• glucose variability measured with the coefficient of variation (CV)					
1350	• glucose variability measured with the standard deviation (SD)					
1351	• % <60 mg/dL					
1352	low blood glucose index					
1353	 hypoglycemia events (defined as at least 15 consecutive minutes <70 mg/dL) 					
1354	• %>250 mg/dL					
1355	• %>300 mg/dL					
1356	high blood glucose index					
1357	<u>HbA1c:</u>					
1358	• HbA1c <7.0% at 26 weeks					
1359	• HbA1c <7.5% at 26 weeks					
1360	• HbA1c improvement from baseline to 26 weeks >0.5%					
1361	• HbA1c improvement from baseline to 26 weeks >1.0%					
1362	• HbA1c relative improvement from baseline to 26 weeks >10%					
1363	• HbA1c improvement from baseline to 26 weeks >1.0% or HbA1c <7.0% at 26 weeks					

- 1364 *Questionnaires:*
- Fear of Hypoglycemia Survey (HFS-II) total score and 3 subscales:
- Behavior (avoid) 1366 1367 • Behavior (maintain high BG) 1368 Worry 1369 • Hyperglycemia Avoidance Scale – total score and 4 subscales: 1370 Immediate action 1371 Worry • Low BG preference 1372 Avoid extremes 1373 Diabetes Distress Scale – total score and 4 subscales: 1374 1375 Emotional burden 1376 Physician-related distress 1377 Regimen-related distress 1378 Interpersonal distress 1379 • Hypoglycemia Confidence Scale – total score 1380 Clarke Hypoglycemia Awareness Scores 1381 • INSPIRE survey scores 1382 System Usability Scale (SUS) • 1383 1384 Other: 1385 • Insulin 1386 Total daily insulin (units/kg) 1387 Basal[·] bolus insulin ratio 1388 • Weight and Body Mass Index (BMI) 1389 10.4.2.3 Safety Analyses 1390 All randomized participants will be included in these analyses and the circumstances of all 1391 reportable cases of the following will be summarized and tabulated by treatment group:
- 1392 Severe hypoglycemia
- 1393 Diabetic ketoacidosis
- Other serious adverse events and serious adverse device events

- 1395 Unanticipated adverse device effects
- 1396 **10.4.3 CGM Metrics Calculations**
- Randomization is preceded by two weeks of CGM run-in, which will be used in the calculationof baseline CGM metrics.
- 1399 CGM data starting from randomization visit through the 6 month visit will be included in the
- 1400 calculation of each CGM metric. Percentages in range 70-180 mg/dL (and all other CGM-based
- 1401 metrics) will be calculated giving equal weight to each CGM point for each participant.

1402 **10.5** Analysis Datasets and Sensitivity Analyses

- 1403 All analyses comparing the CLC arm with SAP arm will follow the intention-to-treat (ITT)
- 1404 principle with each participant analyzed according to the treatment assigned by randomization.
- 1405 All randomized participants will be included in the primary and secondary hierarchical analyses.
- 1406 Safety outcomes will be reported for all enrolled participants, irrespective of whether the 1407 participants was randomized or the study was completed.
- 1408 **10.5.1 Per Protocol Analyses**
- 1409 If more than 5% of participants have fewer than 168 hours of post-randomization CGM data,
 1410 the primary and secondary hierarchical analyses will be replicated excluding such participants.
- 1411 The primary and secondary hierarchical analyses will be replicated only with participants from
- 1412 CLC group who used the system in CL mode for >80% overall and with participants from SAP
- 1413 group who used the sensor for >80% overall.
- 1414 **10.5.2 Other Sensitivity Analyses**
- 1415 <u>Confounding</u>
- 1416 The primary analysis described below will include a pre-specified list of covariates. As an
- 1417 additional sensitivity analysis, any baseline demographic or clinical characteristics observed to
- be imbalanced between treatment groups will be added as covariates to the analyses of the
- 1419 primary and secondary hierarchical metrics. The determination of a meaningful baseline
- 1420 imbalance will be based on clinical judgement and not a p-value.
- 1421 Exclude First 2 Weeks of CGM Data
- 1422 As noted above in Section 10.4.3, calculation of CGM metrics will include all available post-
- randomization CGM data. As a sensitivity analysis, each of the primary and secondary
- hierarchical CGM metrics listed in 10.4.1 and 10.4.2.1 will be recalculated excluding the first
- 1425 two weeks of CGM data following the randomization visit. A parallel set of analyses will be
- 1426 done on these recalculated metrics.
- 1427 <u>Missing Data</u>

- 1428 It is worth emphasizing that any statistical method for handling missing data makes a number of
- 1429 untestable assumptions. The goal will be to minimize the amount of missing data in this study so
- 1430 that results and conclusions will not be sensitive to which statistical method is used. To that end,
- sensitivity analyses will be performed to explore whether results are similar for primary and
- secondary hierarchical analysis when using different methods. The following methods will beapplied:
- Direct likelihood (primary analysis described below)
- Rubin's multiple imputation
- Available cases only
- 1437

1438 **10.6 Analysis of the Primary Efficacy Endpoint**

- Summary statistics (mean ± SD or median (quartiles)) will be reported for the CGM-measured %
 in range 70-180 mg/dL and for differences from pre-randomization by treatment group.
- 1441 Changes from run-in pre-randomization CGM wear to the 6-month post-randomization period in
- 1442 CGM-measured % in range 70-180 mg/dL between two treatment arms will be compared using a
- 1443 linear mixed effects regression model while adjusting for baseline CGM-measured % in range
- 1444 70-180 mg/dL, age, prior CGM and pump use, and clinical center (random effect). Missing data
- 1445 will be handled using direct likelihood. Residual values will be examined for an approximate
- normal distribution. If residuals are highly skewed even after the transformation, then a
- 1447 transformation or robust statistical method (e.g., non-parametric or MM estimation) will be used
- 1448 instead. It is expected that the residual values for CGM-measured % in range 70-180 mg/dL will
- 1449 follow an approximate normal distribution.

145010.7 Analysis of the Secondary Endpoints

- 1451 Point estimated and confidence intervals for the treatment arm differences will be presented for 1452 all secondary metrics. The models will adjust for the corresponding baseline metric, age, prior
- 1453 CGM and pump use, and clinical center (random effect).
- 1454 **10.7.1 Hierarchical Analyses**
- 1455 To preserve the overall type 1 error for selected key secondary endpoints, a hierarchical testing
- procedure will be used. If the primary analysis for time in range described above results in a statistically significant result (p < 0.05), then testing (similar with the model described above
- 1458 for the primary outcome) will proceed to the next outcome metric in the following order:
- CGM-measured % in range 70-180 mg/dL (primary outcome)
- CGM-measured % above 180 mg/dL
- 1461 CGM-measured mean glucose
- 1462 HbA1c at 26 weeks
- CGM-measured % below 70 mg/dL
- CGM-measured % below 54 mg/dL

- 1465 This process continues iteratively moving to the next variable down on the list until a non-
- 1466 significant result ($p \ge 0.05$) is observed, or all six variables have been tested. If a non-significant
- 1467 result is encountered, then formal statistical hypothesis testing is terminated and any variables
- below on the list are not formally tested and analysis of these variables become exploratory.
- 1469 For example, in the hypothetical scenario depicted in the table below, the first four outcome
- 1470 variables have a significant result so testing continues to the fifth variable (CGM % below 70
- 1471 mg/dL). The result is not significant for that fifth variable (p = 0.06) so testing stops. No formal
- 1472 hypothesis test is conducted for the sixth variable on the list in this example scenario.

HIERARCHICAL ORDER	OUTCOME VARIABLE	TREATMENT ARM P-VALUE	SIGNIFICANT?	ACTION
1 st	CGM % 70-180 mg/dL (primary outcome)	0.001	Yes	Test next variable
2 nd	CGM % above 180 mg/dL	0.02	Yes	Test next variable
3 rd	CGM mean glucose	0.007	Yes	Test next variable
4 th	HbA1c at 26 weeks	0.03	Yes	Test next variable
5 th	CGM % below 70 mg/dL	0.06	No	Stop formal testing
6 th	CGM % below 54 mg/dL	Not tested	Unknown	N/A

Table 3. Example Hierarchical Test Results

- 1474 Regardless of the results of the hierarchical testing, summary statistics appropriate to the
- 1475 distribution will be tabulated by treatment arm for each hierarchical outcome. A 95% confidence
- 1476 interval for the treatment arm difference will also be calculated for all four hierarchical outcomes
- 1477 listed above. However, a confidence interval that excludes zero will not be considered a
- statistically significant result if an outcome variable higher on the hierarchical list failed reach
- 1479 statistical significance.

1480 **10.7.2 Other Endpoint Analyses**

- 1481 <u>CGM-Measured Outcomes</u>
- 1482 The analyses for the secondary CGM-measured outcomes will parallel those mentioned above 1483 for the primary outcome.
- 1484 <u>*HbA1c*</u>

Summary statistics (mean \pm SD) will be reported for the central lab HbA1c at 26-weeks and for differences from pre-randomization by treatment group.

- 1487 Change in HbA1c from baseline to 26 weeks will be compared between the two treatment arms
- using a linear model while adjusting for baseline HbA1c, age, prior CGM and pump use, andclinical center (random factor).
- 1490 Missing data will be handled using direct likelihood in a regression model including all available
- 1491 central laboratory HbA1c measurements at baseline and 26 weeks visits. When available, the
- 1492 local HbA1c measurement will be included in the regression model as an auxiliary variable.
- 1493 For the binary HbA1c outcomes listed above, risk-adjusted percentages by treatment group will
- be computed from a logistic regression model. The logistic regression will adjust for the same
- 1495 factors mentioned above for the analysis with HbA1c as a continuous factor (i.e., baseline
- 1496 HbA1c, age, prior CGM and pump use, and clinical site as a random effect).
- 1497 *Questionnaires and Other Outcomes*

- 1498 For questionnaires administered to both randomization groups, comparisons will be made using
- similar linear models as described above for the primary outcomes. Separate models will be run
- 1500 for the total score and each of the subscales listed above.
- Similarly, for insulin, weight, and BMI metrics comparisons will be made using similar linearmodels as described above for the primary HbA1c analysis.

1503 **10.8 Safety Analyses**

- 1504 All randomized participants will be included in these analyses and all their post-randomization 1505 safety events will be reported.
- 1506 The circumstances of all reportable cases of the following will be summarized and tabulated by1507 treatment group:
- Severe hypoglycemia (as defined in section 8.1)
- Diabetic ketoacidosis (as defined in section 8.1)
- Ketone events defined as day with ketone level >1.0 mmol/L
- CGM-measured hypoglycemic events (≥ 15 minutes with glucose concentration <54 mg/dL)
- CGM-measured hyperglycemic events (≥15 minutes with glucose concentration >300 mg/dL)
- BG-measured hypoglycemic events (one BG record <54 mg/dL)
- BG-measured hyperglycemic events (one BG record >350 mg/dL)
- Worsening of HbA1c from baseline to 26 weeks by >0.5%
- Other serious adverse events (SAE) and serious adverse device events (SADE)
- 1518 Adverse device effects (ADE)
- Unanticipated adverse device effects (UADE)
- 1520 For the following outcomes, mean \pm SD or summary statistics appropriate to the distribution will
- 1521 be tabulated by treatment group:
- Number of SH events and SH event rate per 100 person-years
- Number of DKA events and DKA event rate per 100 person-years
- Any adverse event' rate per 100 person-years

- 1525 If enough events, the numbers will be compared between the two treatment arms using a robust
- 1526 Poisson regression. The regression will adjust for the participant-reported number of events prior
- to the start of the study and site as random effect. The amount of follow up will be included as an
- 1528 offset covariate to compare the rates.
- 1529 Comparison of safety outcomes between the two treatment groups only include those
- 1530 events occurring on or after randomization until the 26 week visit.
- Any pre-randomization adverse events will be tabulated separately and will include participants who were never randomized.

1533 10.9 Intervention Adherence

- 1534 The following tabulations and analyses will be performed by treatment group to assess
- 1535 intervention adherence for the study:
- Sensor use hours of use and percent time of use
- The daily frequency of downloaded BGM use
- 1538 For CLC arm only, the following will be tabulated to assess adherence:
- % time in different operational modes per week overall and by month
- **10.10 Adherence and Retention Analyses**
- 1541 The following tabulations and analyses will be performed by treatment group to assess protocol1542 adherence for the study:
- Number of protocol and procedural deviations per participant along with the number and
 percentage of participants with each number of deviations
- Number of protocol and procedural deviations by severity with brief descriptions listed
- Flow chart accounting for all participants at all scheduled visits and phone contacts post treatment initiation to assess visit and phone completion rates
- Number of and reasons for unscheduled visits and phone calls
- Number of participants who stopped treatment and reasons

1550 **10.11 Baseline Descriptive Statistics**

- 1551 Baseline demographic and clinical characteristics of the cohort of all randomized participants
- 1552 will be summarized in a table using summary statistics appropriate to the distribution of each
- variable. Descriptive statistics will be displayed overall and by treatment group.

- 1554 Will include:
- 1555 Age
- 1556 HbA1c
- 1557 Gender
- 1558 Race/ethnicity
- 1559 Income, education, and/or insurance status
- Insulin method before enrollment (pump vs. MDI)
- 1561 CGM use before enrollment
- 1562 Diabetes duration
- 1563 BMI
- 1564 C-peptide
- Scores for diabetes specific personality, quality of life, hypoglycemia awareness and fear questionnaires
- **1567 10.12 Device Issues**
- 1568 The following tabulations and analyses will be performed by treatment group to assess device 1569 issues:
- Device malfunctions requiring study team contact and other reported device issues
- Sensor performance metrics (difference, absolute relative difference, and International Organization for Standardization criteria) – if applicable, by sensor version.
- % time CGM data available overall and by month
- 1574 The following tabulations will be performed for the CLC arm only:
- Performance metrics, describing the Control-IQ system and its components like:
- % time CGM data were available to the Control-IQ system overall and by month
- % time in different operational modes per week overall and by month
- Rate of different failure events and alarms per 24 hours recorded by the Control-IQ system overall and by month
- Technology Expectations Survey score at baseline and Technology Acceptance Survey score at 26 weeks

1582 **10.13 Planned Interim Analyses**

1583 No interim efficacy analysis is planned.

1584 The DSMB will review safety data at intervals, with no formal stopping rules other than the

1585 guidelines provided in the participant-level and study-level stopping criteria (as defined in 1586 section 8.5 of the protocol).

1587 **10.14 Subgroup Analyses**

1588 In exploratory analyses, all primary outcomes found significant according to the hierarchical

- rules outlined in section 10.7.1 will be assessed separately in various subgroups and for
- 1590 continuous variables according to the baseline value as defined below. Tests for interaction1591 with treatment group will be performed and further explored if an interaction will be found in
- 1591 with freatment group will be performed and further explored if an interaction will be four 1592 the first place.
- 1392 the first place.
- 1593 Interpretation of subgroup analyses will depend on whether the overall analysis demonstrates a
- significant treatment group difference. In the absence of such an overall difference and if

1595 performed, subgroup analyses will be interpreted with caution. For continuous variables, results

1596 will be displayed in subgroups based on cutpoints although the analysis will utilize the variable

as continuous, except for age which will be analyzed both as a continuous variable and in two age groups. If there is insufficient sample size in a given subgroup, the cutpoints for continuous

1599 age groups. If there is insufficient sample size in a given subgroup, the carpoints for continuous measures may be adjusted per the observed distribution of values. Cutpoint selection for display purposes will be made masked to the outcome data.

- 1601 Baseline HbA1c
- Baseline CGM time spent <70 mg/dL
- Baseline CGM time spent >180 mg/dL
- Baseline CGM time 70-180 mg/dL
- Device use before the enrollment: pump/MDI, CGM/no CGM, and combinations of both
- 1606 Age
- 1607 Sex
- 1608 Race
- 1609 Clinical site
- Additional analyses may be performed for subgroups defined based on the following baselinedemographic/clinical characteristics.
- 1612 Body mass index
- Income, education, and/or insurance status
- Baseline scores for quality of life, hypoglycemia awareness and fear questionnaires
- 1615 C-peptide level

161610.15 Multiple Comparison/Multiplicity

- 1617 Primary Analysis
- 1618 Since there will be a single comparison for the primary outcome (CGM-measured % 70-180
- 1619 mg/dL), no adjustment is needed.
- 1620 <u>Secondary Hierarchical Analyses</u>
- 1621 The hierarchical testing procedure described above in section 10.7.1 will be used to control the
- 1622 overall type 1 error for the primary outcome plus five key secondary outcomes identified above.
- 1623 <u>All Other Secondary Analyses</u>
- 1624 For all above-mentioned secondary analyses, the false discovery rate will be controlled using the 1625 adaptive Benjamini-Hochberg procedure.

1626 **10.16 Exploratory Analyses**

- 1627 In addition to the analysis for the CGM-measured endpoints described earlier, separate analyses1628 will be conducted for daytime and nighttime.
- 1629 The CGM-measured analyses will be replicated with only CGM data when the closed-loop was
- active for the CLC group. The CGM data for the SAP group will be the same as mentioned
- above in the CGM Metrics Calculation section.

1632 Chapter 11: Data Collection and Monitoring

1633 **11.1 Case Report Forms and Device Data**

1634 The main study data are collected through a combination of electronic case report forms

1635 (CRFs) and electronic device data files obtained from the study software and individual

hardware components. These electronic device files and electronic CRFs from the study website are considered the primary source documentation

1637 website are considered the primary source documentation.

1638 When data are directly collected in electronic case report forms, this will be considered the

source data. Each participating site will maintain appropriate medical and research records for

1640 this trial, in compliance with ICH E6 and regulatory and institutional requirements for the 1641 protection of confidentiality of participants.

1642 **11.2 Study Records Retention**

1643 Study documents should be retained for a minimum of 2 years after the last approval of a

1644 marketing application in an ICH region and until there are no pending or contemplated marketing

applications in an ICH region or until at least 2 years have elapsed since the formal

1646 discontinuation of clinical development of the investigational product. These documents should

1647 be retained for a longer period, however, if required by local regulations. No records will be

1648 destroyed without the written consent of the sponsor, if applicable. It is the responsibility of the

sponsor to inform the investigator when these documents no longer need to be retained.

1650 **11.3 (**

11.3 Quality Assurance and Monitoring

1651 Designated personnel from the Coordinating Center will be responsible for maintaining quality

assurance (QA) and quality control (QC) systems to ensure that the clinical portion of the trial is

1653 conducted and data are generated, documented and reported in compliance with the protocol,

1654 Good Clinical Practice (GCP) and the applicable regulatory requirements. Adverse events will

1655 be prioritized for monitoring.

1656 A risk-based monitoring (RBM) plan will be developed and revised as needed during the course

1657 of the study, consistent with the FDA "Guidance for Industry Oversight of Clinical

1658 Investigations — A Risk-Based Approach to Monitoring" (August 2013). Study conduct and

1659 monitoring will conform with 21 Code of Federal Regulations (CFR) 812.

1660 The data of most importance for monitoring at the site are participant eligibility and adverse 1661 events. Therefore, the RBM plan will focus on these areas. As much as possible, remote 1662 monitoring will be performed in real-time with on-site monitoring performed to evaluate the

1663 verity and completeness of the key site data. Elements of the RBM may include:

- Qualification assessment, training, and certification for sites and site personnel
- Oversight of Institutional Review Board (IRB) coverage and informed consent procedures
- Central (remote) data monitoring: validation of data entry, data edits/audit trail, protocol review of entered data and edits, statistical monitoring, study closeout
- On-site monitoring (site visits): source data verification, site visit report

- 1669 Agent/Device accountability
- 1670 Communications with site staff
- Patient retention and visit completion
- Quality control reports
- 1673 Management of noncompliance
- 1674 Documenting monitoring activities
- Adverse event reporting and monitoring
- 1676 Coordinating Center representatives or their designees may visit the study facilities at any time
- 1677 in order to maintain current and personal knowledge of the study through review of the records,
- 1678 comparison with source documents, observation and discussion of the conduct and progress of
- the study.

1680 **11.4 Protocol Deviations**

- 1681 A protocol deviation is any noncompliance with the clinical trial protocol, GCP, or procedure
- 1682 requirements. The noncompliance may be either on the part of the participant, the investigator,
- 1683 or the study site staff. As a result of deviations, corrective actions are to be developed by the site
- and implemented promptly.
- 1685 The site PI/study staff is responsible for knowing and adhering to their IRB requirements.
- 1686 Further details about the handling of protocol deviations will be included in the monitoring plan.

1687 **Chapter 12: Ethics/Protection of Human Participants**

1688 **12.1 Ethical Standard**

1689 The investigator will ensure that this study is conducted in full conformity with Regulations for

the Protection of Human Participants of Research codified in 45 CFR Part 46, 21 CFR Part 50,
21 CFR Part 56, and/or the ICH E6.

1692**12.2 Institutional Review Boards**

1693 The protocol, informed consent form(s), recruitment materials, and all participant materials will 1694 be submitted to the IRB for review and approval. Approval of both the protocol and the consent 1695 form must be obtained before any participant is enrolled. Any amendment to the protocol will 1696 require review and approval by the IRB before the changes are implemented to the study. All 1697 changes to the consent form will be IRB approved; a determination will be made regarding 1698 whether previously consented participants need to be re-consented.

1699 **12.3 Informed Consent Process**

1700 **12.3.1 Consent Procedures and Documentation**

1701 Informed consent is a process that is initiated prior to the individual's agreeing to participate in 1702 the study and continues throughout the individual's study participation. Extensive discussion of 1703 risks and possible benefits of participation will be provided to the participants and their families. 1704 Consent forms will be IRB-approved and the participant will be asked to read and review the 1705 document. The investigator will explain the research study to the participant and answer any 1706 questions that may arise. All participants will receive a verbal explanation in terms suited to their comprehension of the purposes, procedures, and potential risks of the study and of their 1707 1708 rights as research participants. Participants will have the opportunity to carefully review the

1709 written consent form and ask questions prior to signing.

The participants should have the opportunity to discuss the study with their surrogates or think about it prior to agreeing to participate. The participant will sign the informed consent document prior to any procedures being done specifically for the study. The participants may withdraw consent at any time throughout the course of the trial. A copy of the informed consent document will be given to the participants for their records. The rights and welfare of the participants will be protected by emphasizing to them that the quality of their medical care will not be adversely

1716 affected if they decline to participate in this study.

1717 **12.3.2 Participant and Data Confidentiality**

1718 The study monitor, other authorized representatives of the sponsor, representatives of the IRB or 1719 device company supplying study product may inspect all documents and records required to be

maintained by the investigator, including but not limited to, medical records (office, clinic, or

- hospital) for the participants in this study. The clinical study site will permit access to such
- 1722 records.

- 1723 The study participant's contact information will be securely stored at each clinical site for
- 1724 internal use during the study. At the end of the study, all records will continue to be kept in a
- secure location for as long a period as dictated by local IRB and Institutional regulations.

1726 Study participant research data, which is for purposes of statistical analysis and scientific

reporting, will be transmitted to and stored at the Jaeb Center for Health Research and the

1728 University of Virginia Center for Diabetes Technology. This will not include the participant's

- 1729 contact or identifying information. Rather, individual participants and their research data will be
- identified by a unique study identification number. The study data entry and study management
- 1731 systems used by clinical sites and by Jaeb research staff will be secured and password protected.
- 1732 At the end of the study, all study databases will be de-identified and archived at Jaeb Center for
- 1733 Health Research and the University of Virginia Center for Diabetes Technology. Permission to
- transmit data will be included in the informed consent.

1735 Chapter 13: References

- Kovatchev, B.P., Breton, M.D., Keith-Hynes, P.T., Patek, S.D. The Diabetes Assistant (DiAs) – Unified platform for monitoring and control of blood glucose levels in diabetic patients; PCT/US12/43910, 2012.
- Keith Hynes, P., Guerlain, S., Mize, L.B., Hughes Karvetski, C., Khan, M., McElwee
 Malloy, M. & Kovatchev, B.P. DiAs user interface: A patient-centric interface for mobile artificial pancreas systems. J Diabetes Sci Technol, 7, 1416–1426 (2013). PMID: 24351168
- Place, J., Robert, A., Ben Brahim, N., Keith Hynes, P., Farret, A., Pelletier, M.J.,
 Buckingham, B., Breton, M., Kovatchev, B.P. & Renard, E. DiAs web monitoring: A
 real-time remote monitoring system designed for artificial pancreas outpatient trials. J
 Diabetes Sci Technol, 7, 1427–1435. (2013). PMID: 24351169
- Keith-Hynes, P., Mize, B., Robert, A., Place, J. The Diabetes Assistant: A smartphone-based system for real-time control of blood glucose. Electronics 2014, 3, 609-623; doi:10.3390/electronics3040609
- Kovatchev, B.P., Renard, E., Cobelli, C., Zisser, H., Keith-Hynes, P., Anderson, S.M.
 Brown, S.A. Chernavvsky, D.R., Breton, M.D., Farret, A., Pelletier, M.J., Place, J.,
 Bruttomesso, D., Del Favero, S., Visentin, R., Filippi, A., Scotton, R., Avogaro, A. & Doyle
 III, F.J. Feasibility of outpatient fully integrated closed-loop control: First studies of wearable
 artificial pancreas. Diabetes Care, 36, 1851-1858 doi: 10.2337/dc12-1965 (2013). PMID:
 23801798, PMCID: PMC3687268
- Kovatchev, B.P., Renard, E., Cobelli, C., Zisser, H., Keith-Hynes, P., Anderson, S.M.,
 Brown, S.A., Chernavvsky, D.R., Breton, M.D., Mize, L.B., Farret, A., Place, J.,
 Bruttomesso, D., Del Favero, S., Boscari, F., Galasso, S., Avogaro, A., Magni, L., Di Palma,
 F., Toffanin, C., Messori, M., Dassay, E., Doyle, F. III. Safety of outpatient closed-loop
 control: First randomized crossover trials of a wearable artificial pancreas. Diabetes Care,
 37, 1789-1796 doi: 10.2337/dc13-2076 (2014). PMID: 24929429, PMCID: PMC4067397
- DeSalvo, D., Keith-Hynes, P., Peyser, T., Place, J., Caswell, K., Wilson, D., Harris, B.,
 Clinton, P., Kovatchev, B.P., Buckingham, B.A. Remote glucose monitoring in camp setting
 reduces the risk of prolonged nocturnal hypoglycemia. Diabetes Technol Ther, 16, 1-7
 doi:10.1089/dia.2013.0139 (2013). PMID: 24168317
- Ly, T.T., Breton, M.D., Keith-Hynes, P., De Salvo, D., Clinton, P., Benassi, K., Mize, L.B.,
 Chernavvsky, D.R., Place, J., Wilson, D.M., Kovatchev, B.P., Buckingham, B.A. Overnight
 glucose control with an automated, unified safety system in children and adolescents with
 type 1 diabetes at diabetes camp. Diabetes Care, 37, doi: 10.2337/dc14-0147 (2014). PMID:
 24879841, PMCID: PMC4179507
- Kropff, J., Del Favero, S., Place, J., Toffanin, C., Visentin, R., Monaro, M., Messori, M., Di Palma, F., Lanzola, G., Farret, A., Boscari, F., Galasso, S., Magni, P., Avogaro, A., Keith-Hynes, P., Kovatchev, B.P., Bruttomesso, D., Cobelli, C., DeVries, J.H., Renard, E., Magni, L., for the AP@home consortium. 2 month evening and night closed-loop glucose control in patients with Type 1 Diabetes under free-living conditions: A randomised crossover trial. Lancet Diabetes Endocrinol, 3(12):939-47 dx.doi.org/10.1016/S2213-8587(15)00335-6 (2015).

- 10. Renard, E et al. Reduction of hyper- and hypoglycemia during two months with a wearable
 artificial pancreas from dinner to breakfast in patients with type 1 diabetes. 2015-A-3083Diabetes. American Diabetes Association 75th Scientific Sessions, Boston, MA, poster
 940-P.
- 1781 11. Anderson, S et al. First New Year's Night on closed-loop control (CLC) at home: Case
 1782 reports from a multi-center international trial of long-term 24/7 CLC. 2015-A-4763-Diabetes.
 1783 American Diabetes Association 75th Scientific Sessions, Boston, MA, presentation 223–OR.
- 1784 12. Kovatchev BP. JDRF Multi-Center 6-Month Trial of 24/7 Closed-Loop Control. Advanced
 Technologies and Treatments for Diabetes (ATTD), Plenary Session, Milan, Italy, 2016.
- 1786 13. Kovatchev, B.P. Closed-loop control modalities in type 1 diabetes: Efficacy and system
 acceptance. Advanced Technologies and Treatments for Diabetes (ATTD), Paris, France,
 2015.
- 14. Del Favero S. A multicenter randomized cross-over Italian pediatric summer camp: AP vs
 SAP in 5-8 year old children. Advanced Technologies and Treatments for Diabetes (ATTD),
 Plenary Session, Milan, Italy, 2016.
- 1792 15. Cherñavvsky, D. et al. Closed-loop control during extended winter-sport exercise in youth
 1793 with T1DM: Results from the first AP ski camp. ATTD Data Club Session, Milan, (2016).
- 16. Chernavvsky, D.R., DeBoer, M.D., Keith-Hynes, P., Mize, B., McElwee, M., Demartini, S.,
 Dunsmore, S.F., Wakeman, C., Kovatchev, B.P., Breton, M.D. Use of an artificial pancreas among adolescents for a missed snack bolus and an underestimated meal bolus. Pediatric
 Diabetes, doi:10.1111/pedi.12230 (2014). PMID: 25348683
- 1798 17. Brown, S.A., Kovatchev, B.P., Breton, M.D., Anderson, S.M., Keith-Hynes, P., Patek, S.D.,
 1799 Jiang, B., Ben Brahim, N., Vereshchetin, P., Bruttomesso, D., Avogaro, A., Del Favero, S.,
 1800 Boscari, F., Galasso, S., Visentin, R., Monaro, M., Cobelli, C. Multinight "bedside"
 1801 closed-loop control for patients with type 1 diabetes. Diabetes Technol Ther 17(3),
 1802 doi:10.1089/dia.2014.0259 (2015). PMID: 25594434, PMCID: PMC4346235
- 1803 18. Kovatchev BP, Tamborlane WV, Cefalu WT, Cobelli C. The Artificial Pancreas in 2016:
 1804 A Digital Treatment Ecosystem for Diabetes. Diabetes Care 2016; 39:1123-27. PMID:
 1805 27330124
- 19. Del Favero S, Boscari F, Messori M, Rabbone I, Bonfanti R, Sabbion A, IaFusco D,
 Schiaffini R, Visentin R, Calore R, Moncada YL, Galasso S, Galderisi A, Vallone V, Di
 Palma F, Losiouk E1, Lanzola G1, Tinti D, Rigamonti A, Marigliano M, Zanfardino A,
 Rapini N, Avogaro A, Chernavvsky D, Magni L, Cobelli C, Bruttomesso D. Randomized
 Summer Camp Crossover Trial in 5- to 9-Year-Old Children: Outpatient Wearable Artificial
 Pancreas Is Feasible and Safe. Diabetes Care. 2016;39:1180-5. PMID: 27208335
- 20. Renard E, Farret A, Kropff J, Bruttomesso D, Messori M, Place J, Visentin R, Calore R,
 Toffanin C, Di Palma F, Lanzola G, Galasso S, Avogaro A, Keith-Hynes P, Kovatchev BP,
 Del Favero S., Cobelli C, Magni L, DeVries HJ. AP@home Consortium. Day and night
 closed loop glucose control in patients with type 1 diabetes under free-living conditions:
 comparison of a single-arm, 1-month experience to results of a previously reported feasibility
 study of evening and night at home. Diabetes Care 2016; 39:1151-60. PMID: 27208331

- 1818 21. Anderson SM, Raghinaru D, Pinsker JE, Boscari F, Renard E, Buckingham BA, Nimri R,
 1819 Doyle FJ III, Brown SA, Keith-Hynes P, Breton MD, Chernavvsky D, Bevier WC, Bradley
 1820 PK, Bruttomesso D, Del Favero S, Calore R, Cobelli C, Avogaro A, Farret A, Place J, Ly TT,
 1821 Shanmugham S, Phillip M, Dassau E, Dasanayake IS, Kollman C, Lum JW, Beck RW, and
 1822 Kovatchev BP. Multinational home use of closed-loop control is safe and effective.
 1823 Diabetes Care 2016; 39:1143-1150. PMID: 27208316
- 1824 22. DeBoer MD, Cherñavvsky DR, Topchyan K, Kovatchev BP, Francis GL, Breton MD. Heart rate informed artificial pancreas system enhances glycemic control during exercise in adolescents with T1D. Pediatr Diabetes. 2016; doi: 10.1111/pedi.12454. PMID: 27734563
- 1827 23. Kovatchev BP, Cheng P, Anderson SM, Pinsker JE, Boscari F, Buckingham BA, Doyle FJ.
 1828 III, Hood KK, Brown SA. Breton MD, Chernavvsky DR, Bevier WC, Bradley PK,
 1829 Bruttomesso D, Del Favero S, Calore R, Cobelli C, Avogaro A, Ly TT, Shanmugham S,
 1830 Dassau E, Kollman C, Lum JW, Beck RW, for the Control to Range Study Group. Feasibility
 1831 of Long-Term Closed-Loop Control: A Multicenter 6-Month Trial of 24/7 Automated Insulin
 1832 Delivery. Diabetes Technol Ther 2017; 19: 18-24. doi:10.1089/dia.2016.0333. PMID:
 1833 27982707
- 1834 24. DeBoer MD, Breton MD, Wakeman CA, Schertz EM, Emory EG, Robic JL, Kollar LL,
 1835 Kovatchev BP, Chernavvsky DR. Performance of an Artificial Pancreas System for Young
 1836 Children with Type 1 Diabetes. Diabetes Technol Ther 2017; 19, DOI:
 10.1089/dia.2016.0424. PMID: 28426239
- 1838 25. Breton MD, Cherñavvsky DR, Forlenza GP, DeBoer MD, Robic J, Wadwa RP, Messer LH,
 1839 Kovatchev BP, Maahs DM. Closed Loop Control During Intense Prolonged Outdoor
 1840 Exercise in Adolescents With Type 1 Diabetes: The Artificial Pancreas Ski Study. Diabetes
 1841 Care 2017 Aug; dc170883. https://doi.org/10.2337/dc17-0883
- 1842 26. Gonder-Frederick L, Shepard J, Vajda K, Wakeman C, McElwee M, Kovatchev B:
 1843 Personality traits and BG profile improvements with continuous glucose monitoring use.
 1844 Diabetes 61 (Suppl 1):808-P, 2012
- 1845 27. Jackson DN, Ashton MC, Tomes JL: The six-factor model of personality: Facets from the
 Big Five. Personality & Individual Differences 21:391-402, 1996
- 1847 28. Clarke WL, Cox DJ, Gonder-Frederick L, Julian D, Schlundt D, Polonsky W: Reduced
 1848 Awareness of Hypoglycemia in Adults With IDDM: A prospective study of hypoglycemic
 1849 frequency and associated symptoms. Diabetes Care 18:517-522, 1995
- 1850 29. Gonder-Frederick LA, Schmidt KM, Vajda KA, Greear ML, Singh H, Shepard JA, Cox DJ:
 1851 Psychometric properties of the hypoglycemia fear survey-ii for adults with type 1 diabetes.
 1852 Diabetes Care 34:801-806, 2011
- 30. Singh H, Gonder-Frederick L, Schmidt K, Ford D, Vajda K, Hawley J, Cox DJ: Assessing
 Hyperglycemia Avoidance in People with type 1 Diabetes. Diabetes Management 4:263-271,
 2014
- 1856 31. Polonsky WH, Fisher L, Hessler D, Edelman SV. Investigating Hypoglycemic Confidence in
 1857 Type 1 and Type 2 Diabetes. Diabetes Technol Ther. 2017;19(2):131-6.

- 1858 32. Polonsky WH, Fisher L, Earles J, Dudl RJ, Lees J, Mullan J, Jackson RA: Assessing
- psychosocial distress in diabetes: development of the diabetes distress scale. Diabetes Care
 28:626-631, 2005
- 33. Weissberg-Benchell J, Hessler D, Polonsky WH, Fisher L: Psychosocial Impact of the Bionic
 Pancreas During Summer Camp. J Diabetes Sci Technol, 2016