Dataset Integrity Check for the DCCT-EDIC Baseline Analysis File

As a partial check of the integrity of the DCCT-EDIC datasets archived in the NIDDK data repository, a dataset integrity check (DSIC) was performed to verify that selected published results from the DCCT-EDIC study can be reproduced using archived datasets. A small number of analyses were performed to duplicate published results on the EDIC baseline dataset reported by the DCCT-EDIC Research Group [1] in Diabetes Care (Jan 1999, [22(1)]). Results of the DSIC are described below.

The intent of this DSIC is to provide confidence that the data distributed by the NIDDK repository is a true copy of the study data. Our intent is not to assess the integrity of the statistical analyses reported by study investigators. As with all statistical analyses of complex datasets, complete replication of a set of statistical results should not be expected on a first (or second) exercise in secondary analysis. This occurs for a number of reasons including differences in the handling of missing data, restrictions on cases included in samples for a particular analysis, software coding used to define complex variables, etc. Experience suggests that most discrepancies can ordinarily be resolved by consultation with the study DCC, however this process is labor-intensive for both DCC and Repository staff. It is thus not our policy to resolve every discrepancy that is observed in an integrity check. Thus, we do not attempt to resolve minor or inconsequential discrepancies with published results or discrepancies that involve complex analyses unless staff of the NIDDK Repository suspect that the observed discrepancy suggests that the dataset may have been corrupted in storage, transmission, or processing by repository staff. We do, however, document in footnotes to the integrity check those instances in which our secondary analyses produced results that were not fully consistent with those reported in the target publication.

DCCT-EDIC Baseline Analysis. Table 3 of the publication (p.104) compares characteristics of 1375 participants who completed the DCCT study and were recruited into EDIC, with those of 50 DCCT participants who declined to enroll into EDIC. Table 1 of this DSIC compares the published breakdown to results obtained from the archived SAS data file. The counts, percentages, means, and standard deviations obtained from analyses of the archived data closely match the published tabulations. Likewise ${ }^{\text {a }}, P$-values for tests of differences between treatment groups calculated from archived data exactly match the published results.

[^0]TABLE 1. Characteristics of EDIC participants compared with nonparticipants: Top panel is calculated from Archived Data; Bottom panel contains published results (Table 3 in publication, p.104).

Characteristic	Participants	Nonparticipants	P value
N	1375	53^{b}	
Age (years)	33.6 ± 7.0	31.0 ± 7.7	0.016
Sex (\% female)	48	45	NS
Duration of type 1 diabetes (years)	12.2 ± 4.8	11.6 ± 4.4	NS
Treatment group during DCCT (\% intensive)	50	30	0.005
HbA1c at closeout of DCCT (\%)			
Intensive Group	7.4 ± 1.1	8.5 ± 1.6	0.003
Conventional group	9.1 ± 1.5	9.6 ± 1.4	0.112
Debriefed at DCCT study's end (\%)	99	74	<0.0001
Care transferred to non-DCCT personnel	48	79	<0.0001

Table 3-Characteristics of EDIC participants compared with nonparticipants

Characteristic*	Participants	Nonparticipants	P value
n	1,375	50	-
Age (years)	33.6 ± 7.0	31.0 ± 7.7	0.0155
Sex (\% female)	48	45	NS
Duration of type l diabetes (years)	12.2 ± 4.8	11.6 ± 4.4	NS
Treatment group during DCCT (\% intensive)	50	30	0.0048
HbA $_{1 \text { c }}$ at closeout of DCCT (\%)			
\quad Intensive group	7.4 ± 1.1	8.5 ± 1.6	0.0031
\quad Conventional group	9.1 ± 1.5	9.6 ± 1.4	0.1123
Debriefed at DCCT study's end (\%)	99	74	<0.0001
Care transferred to non-DCCT personnel (\%)	48	79	<0.0001
Data are means \pm SD or \%. P values for continuous variables are from Wilcoxon's rank-sum test; P values			
for categorical variables are from the contingency-table χ^{2} test.			

[^1]Risk factors during first 2 years of EDIC. Table 4 of the publication (p.104) presents the distribution of risk factors, by gender group, for participants in the first two years of EDIC. Table 2 of this DSIC compares the published breakdown to results obtained from the archived SAS data file. The counts, percentages, means, and standard deviations obtained from analyses of the archived data closely match the published tabulations. Any differences in estimates could be attributed to rounding error. Similarly, P-values for tests of differences between treatment groups calculated from archived data closely match the published results.

TABLE 2. Risk factors measured during the first two years of the EDIC study, based on the most recent observation from each patient: Results on current page are calculated from Archived Data; Next page contains published results (Table 4, p.104).

Characteristic	Men	Women	P value
n (\%) ${ }^{\text {c }}$	719 (52.4)	653 (47.6)	
Age (years)	36.4 ± 6.6	35.4 ± 7.2	0.0066
Duration of type 1 diabetes (years)	14.3 ± 4.8	14.8 ± 5.0	NS
BMI (kg/m2)	26.6 ± 3.9	26.0 ± 4.2	<0.0001
Overweight (\%)	30.9	31.9	NS
Waist-to-hip ratio	0.88 ± 0.06	0.77 ± 0.07	<0.0001
Insulin dose	0.72 ± 0.25	0.70 ± 0.24	NS
HbA1c (\%)	8.2 ± 1.3	8.3 ± 1.5	NS
Total cholesterol (mg/dl)	185.1 ± 35.6	188.1 ± 37.0	NS
Triglyceride ($\mathrm{mg} / \mathrm{dl}$)	96.8 ± 75.8	83.1 ± 73.3	<0.0001
HDL cholesterol (mg/dl)	49.5 ± 12.0	59.2 ± 14.0	<0.0001
$<35 \mathrm{mg} / \mathrm{dl}$ (\%)	8.2	1.6	<0.0001
LDL cholesterol (mg/dl)	116.4 ± 30.8	112.1 ± 30.3	0.0083
>130 mg/dl (\%)	30.6	26.0	NS
Hypertension (\%)	26.6	18.1	0.0002
Current cigarette smoker (\%)	22.7	19.9	NS
Exercise level			<0.0001
Strenuous	10.4	2.9	
Vigorous	5.9	3.4	
Moderate	49.5	58.3	
Sedentary	34.3	35.4	
Current alcohol use (\%)	47.4	32.1	<0.0001
Urinary albumin excretion ($\mathrm{mg} / 24 \mathrm{~h}$)	38.1 ± 118.4	41.8 ± 226.9	NS
DQOL total score	76.4 ± 9.4	75.3 ± 8.6	0.0186

[^2]TABLE 2, cont'd. Risk factors measured during the first two years of the EDIC study, based on the most recent observation from each patient: Published results (Table 4 in publication, p.104)

Table 4-Risk factors measured during the first 2 years of the EDIC study, based on the most recent observation from each patient

	Men	Women	P value
n (\%)	719 (52.4)	653 (47.6)	-
Age (years)	36.4 ± 6.6	35.4 ± 7.2	0.0068
Duration of type 1 diabetes (years)	14.3 ± 4.8	14.8 ± 5.0	NS
BMI ($\mathrm{kg} / \mathrm{m}^{2}$)	26.6 ± 3.9	26.0 ± 4.2	0.0001
Overweight (\%)	30.9	31.8	NS
Waist-to-hip ratio	0.88 ± 0.06	0.77 ± 0.07	<0.0001
Insulin dose ($\mathrm{U} \cdot \mathrm{kg}^{-1} \cdot$ day $^{-1}$)	0.71 ± 0.25	0.69 ± 0.24	NS
$\mathrm{HbA}_{1 \mathrm{c}}$ (\%)	8.2 ± 1.3	8.3 ± 1.5	NS
Total cholesterol ($\mathrm{mg} / \mathrm{dl}$)	185.1 ± 35.6	188.1 ± 37.0	NS
Triglyceride (mg/dl)	96.8 ± 75.8	83.1 ± 73.3	0.0001
HDL cholesterol (mg/dl)	49.5 ± 12.0	59.2 ± 14.0	<0.0001
$<35 \mathrm{mg} / \mathrm{dl} \mathrm{(} \mathrm{\%)}$	8.2	1.6	<0.0001
LDL cholesterol (mg/dl)	116.4 ± 30.8	112.1 ± 30.3	0.0083
$>130 \mathrm{mg} / \mathrm{dl}(\%)$	30.6	26.0	NS
Hypertension (\%)	26.6	18.1	0.0002
Current cigarette smoker (\%)	22.7	19.9	NS
Exercise level			<0.001
Strenuous	10.3	2.9	
Vigorous	5.9	3.4	
Moderate	49.5	58.2	
Sedentary	34.3	35.4	
Current alcohol use (\%)	47.4	32.2	<0.001
Urinary albumin excretion ($\mathrm{mg} / 24 \mathrm{~h}$)	38.1 ± 118.4	41.8 ± 226.9	NS
DQOL total score	76.4 ± 9.4	75.3 ± 8.6	0.0184

Data are means $\pm S D$ or \%. P values are for men versus women. Waist-to-hip ratio is based on natural waist circumference. Hypertension is percent diagnosed as hypertensive at any time during DCCT or EDIC and is defined as systolic blood pressure $\geq 140 \mathrm{mmHg}$ and/or diastolic blood pressure $\geq 90 \mathrm{mmHg}$ or use of antihypertensives. Alcohol use is percent reporting consumption of at least one alcoholic beverage per week.
DQOL, Diabetes Quality of Life

Ankle-to-Arm Systolic Blood Pressure Ratio (PVD); Carotid Artery Intimal Medial Thickness (CIMT). Table 5 of the publication (p.105) presents the baseline measurements of ankle-to-arm systolic blood pressure ratio and carotid artery intimal-medial thickness, by age and gender group. Table 3 of this DSIC compares the published breakdown to results obtained from the archived SAS data file. The counts, percentages, means, and standard deviations obtained from analyses of the archived data closely match the published tabulations. Similarly, P-values for tests of differences between treatment groups calculated from archived data closely match the published results.

TABLE 3. PVD and CIMT: Results on current page are calculated from Archived Data; Next page contains published results (Table 5 in publication, p.105).

Systolic blood pressure ratio of resting ankle to arm

Characteristic	Systolic blood pressure ratio of resting ankle to arm							
	$\begin{gathered} \text { Age } \\ \text { decade } \end{gathered}$	$\mathrm{n}^{\text {d }}$	Right	Left	Prevalence of abnormal ankle-to-arm ratio (\% in any four ratios)			
					$\begin{gathered} \text { Percent } \\ <0.8 \\ \hline \end{gathered}$	P (0.8)	$\begin{gathered} \text { Percent } \\ >1.4^{\mathrm{e}} \end{gathered}$	Percent either
Women	20-29	154	1.08 ± 0.10	1.08 ± 0.10	2.6	0.9863	0.0	2.6
	30-39	289	1.11 ± 0.12	1.09 ± 0.13	2.8	0.1306	5.9	8.3
	40-49	202	1.10 ± 0.13	1.08 ± 0.12	3.5	0.7089	1.5	5.0
Men	20-29	117	1.07 ± 0.12	1.08 ± 0.10	2.6		2.6	5.1
	30-39	351	1.12 ± 0.13	1.10 ± 0.13	1.1		3.7	4.8
	40-49	241	1.13 ± 0.13	1.11 ± 0.14	4.2		3.7	7.9

		Maximum intimal-medial thickness of common and internal carotid artery		
Characteristic	Age decade	n	Common (mm)	Internal (mm)
Women	$20-29$	172	0.616 ± 0.073	0.583 ± 0.092
	$30-39$	278	0.657 ± 0.081	0.632 ± 0.147
	$40-49$	178	0.696 ± 0.079	0.719 ± 0.226
Men	$20-29$	125^{f}	0.636 ± 0.059	0.629 ± 0.083
	$30-39$	350	0.684 ± 0.083	0.684 ± 0.114
	$40-49$	211	0.745 ± 0.104	0.806 ± 0.261

[^3]TABLE 3, cont'd. PVD and CIMT, published results (Table 5 in publication, p.105).

Table 5-New measurements in the EDIC protocol

	Age decade	n	Right	Left	Prevalence of abnormal ankle-to-arm ratio (percent in any four ratios)				Maximum intimal-medial thickness of common and internal carotid artery		
					$\begin{aligned} & \text { Percent } \\ & <0.8 \end{aligned}$	$P(0.8)$	Percent <1.4	Percent either			
									n	Common (mm)	Internal (mm)
Women*	20-29	154	1.08 ± 0.11	1.08 ± 0.13	2.6	0.9864	0.0	2.6	172	0.616 ± 0.073	0.583 ± 0.092
	30-39	289	1.11 ± 0.12	1.10 ± 0.13	2.8	0.1307	5.9	8.3	278	0.657 ± 0.081	0.632 ± 0.147
	40-49	202	1.09 ± 0.12	1.07 ± 0.11	3.5	0.7093	1.5	5.0	178	0.696 ± 0.079	0.719 ± 0.226
Men*	20-29	117	1.07 ± 0.11	1.08 ± 0.10	2.6		2.6	5.1	125	0.636 ± 0.059	0.629 ± 0.083
	30-39	351	1.11 ± 0.12	1.10 ± 0.12	1.1		3.7	4.8	350	0.684 ± 0.083	0.684 ± 0.114
	40-49	241	1.13 ± 0.13	1.12 ± 0.14	4.1		3.7	7.9	211	0.745 ± 0.104	0.806 ± 0.261

Data are n, means $\pm S D$, or \%. Dorsalis pedis and posterior tibral pressures were combined using an algorithm of Hiatt et al. (51). P values are for men vs. Women. * P value for trend in percent <0.8 : women, 0.6171 ; men, $0.1513 . P<0.0001$ for both common and internal intimal-medial thickness; all are from Wilcoxon's rank-sum test after linear adjustment for covariance with age.

Diabetes management of EDIC cohort during the first 2 years of EDIC. Table 6 of the publication (p.105) presents characteristics of diabetes management in the EDIC sample in the first 24 months after DCCT closeout. Table 4 of this DSIC compares the published breakdown to results obtained from the archived SAS data file. The counts, percentages, means, and standard deviations obtained from analyses of the archived data closely match the published tabulations. Similarly, P-values for tests of differences between treatment groups calculated from archived data closely match the published results. Differences in event rates of hypoglycemia and/or DKA could be attributed to differences in statistical analyses methods ${ }^{\mathrm{g}}$.

TABLE 4. Diabetes management in EDIC during the first 2 years: Results on current page are calculated from Archived Data; Next page contains published results (Table 6 in publication, p.105) (Note: Slightly different procedures were used in these analyses; see footnote ${ }^{\mathrm{f}}$).

	DCCT treatment group assignment		
Characteristic	Intensive	Conventional	P value
n	687	688	
Insulin delivery during EDIC			<0.0001
\quad CSII	37.0	12.6	
MDI	57.6	56.9	
One or two injections/day	5.3	30.3	
\quad Unknown	0.2	0.3	
Human insulin (\% of subjects using)	91.1	90.8	NS
Insulin dose $\left(\mathrm{U} \mathrm{kg}^{-1} *\right.$ day $\left.^{-1}\right)$	0.75 ± 0.28	0.67 ± 0.20	<0.0001
Self-monitored blood glucose $\geq 4 /$ day $(\%)$	46.4	36.4	0.0002
Hypoglycemia (rate per 100 patient-years)			
Coma/seizure	6.2	7.2	NS
Requiring assistance	24.9	26.3	NS
DKA (rate per 100 patient-years)	2.76	2.36	NS
Overweight (\%)			
Men	32.5	29.7	NS
Women	38.0	25.2	0.0005

[^4]TABLE 4, cont'd. Diabetes management in EDIC during the first 2 years: Published results (Table 6 in publication, p.105).

Table 6-Diabetes management of EDIC cohort during the first 2 years of EDIC

	DCCT treatment group assignment		
	Intensive	Conventional	P value
n	687	688	-
Insulin delivery during EDIC			<0.0001
CSII	37.0	12.6	
MDI	57.6	56.9	
One or two injections/day	5.3	30.3	
Unknown	0.1	0.3	-
Human insulin (\% of subjects using)	91.1	90.8	NS
Insulin dose ($\mathrm{U} \cdot \mathrm{kg}^{-1} \cdot$ day $^{-1}$)	0.75 ± 0.28	0.67 ± 0.20	<0.0001
Self-monitored blood glucose $\geq 4 /$ day (\%)	46.4	36.4	0.0002
Hypoglycemia (rate per 100 patient-years)			
Coma/seizure	6.3	7.1	NS
Requiring assistance	25.4	25.7	NS
DKA (rate per 100 patient-years)	2.68	2.37	NS
Overweight (\%)			
Men	32.5	29.7	NS
Women	38.4	25.2	0.0005

Data are means $\pm S D . P$ values are from the contingency-table χ^{2} test for categorical variables, Wilcoxon's rank-sum test for continuous variables, and from a Wald test of the log-relative adjusted for overdispersion of event rates. Overweight is defined for men as BMI $\left(\mathrm{kg} / \mathrm{m}^{2}\right)>27.8$ from the second National Health and Nutrition Examination Survey (NHANES II) of 1976 to $1980(50)$ and for women as BMI $\left(\mathrm{kg} / \mathrm{m}^{2}\right)>27.3$.

APPENDIX A

Full Text of Article

Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group (1999). Epidemiology of Diabetes Interventions and Complications (EDIC): Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial cohort. Diabetes Care, 22(1):99-111.

NOTE. Single copies of articles published in scientific journals are included with this documentation. These articles are copyrighted, and the repository has purchased ONE reprint from their publisher to include with this documentation. If additional copies are made of these copyrighted articles, users are advised that payment is due to the copyright holder (typically the publisher of the scientific journal).

Epidemiology of Diabetes Interventions and Complications (EDIC)

Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial cohort

Epidemiology of Dubetes Ivterventions and Complications (EDIC)
Research Group

Abstract

OBJECTIVE - The Diabetes Control and Complications Trial (DCCT) demonstrated the powerful impact of glycemic control on the early manifestations of microvascular complications. Contemporary prospective data on the evolution of macrovascular and late microvascular complications of type 1 diabetes are limited. The Epidemiology of Diabetes Interventions and Complications (EDIC) study is a multicenter, longitudinal, observational study designed to use the well-characterized DCCT cohort of $>1,400$ patients to determine the long-term effects of prior separation of glycemic levels on micro- and macrovascular outcomes.

RESEARCH DESIGN AND METHODS - Using a standardized annual history and physical examination. 28 EDIC clinical centers that were DCCT clinics will follow the EDIC cohort for 10 years. Annual evaluation also includes resting electrocardiogram, Doppler ultrasound measurements of ankle/arm blood pressure, and screening for nephropathy: At regular intervals, a timed 4-h urine is collected. lipid profiles are obtained. and stereoscopic fundus photographs are taken. In addition, dual B-mode Doppler ultrasound scans of the common and internal carotid arteries will be performed at years 1 and 6 and at study end.

RESULTS - Written informed consent was obtained from 96% of the DCCT subjects. The participants, compared with nonparticipants, tended to have better glycemic control at the completion of the DCCT and were more likely to have their diabetes care provided by DCCT personnet. The EDIC baseline measurement straufied by sex delineates multiple cardiovascular disease risk factor differences such as age (older in men), waist-to-hip ratio (higher in men), HDL cholesterol (lower in men), hypertension (more prevalent in men), and maximum inti-mal-medial thickness of common and internal carotid arteries (thicker in men). Of the original conventional treatment group, 69% have changed to continuous subcutaneous insulin infusion or multiple daily injections. Although the mean $\mathrm{HbA}_{\text {lc }}$ difference between the intensive and conventional treatment groups narrowed at EDIC years 1 and 2, $\mathrm{HbA}_{1 c}$ remained significantly lower in the intensive group. Of all expected clinic visits, 95% were completed, and the quality of EDIC data is very similar to that observed in the DCCT.

CONCLUSIONS - Although obvious problems exist in extended follow-up studies of completed clinical trials, these are balanced by the value of continued systematic observation of the

[^5]DCCT cohort. In contrast to other epidemiologic studies, EDIC will provide 1) definitive data on type 1 as distinct from type 2 diabetes; 2) reliance on prospective rather than on cross-sectional analysis; 3) long-term followup in a large population: 4) consistent use of objective, reliable measures of outcomes and glycemia; and 5) observation of patients from before the onset of complications.

Diabetes Care 22:99-111, 1999

Morbidity and mortality in type 1 diabetic patients derive mainly from advanced microvascular, neuropathic, and macrovascular complications, with the major clinical impact beginning $15-20$ years after the onset of diabetes $(1,2)$. The Diabetes Control and Complications Trial (DCCT) demonstrated that therapy aimed at maintaining $\mathrm{HbA}_{1 \mathrm{c}}$ levels as close to normal as feasible reduced the risks for the development and progression of early microvascular and neurologic complications of type 1 diabetes (3-5). While the reduction of the earlier stages of diabetic complications could reasonably be expected to slow the evolution to end-stage complications, such as loss of vision or renal failure, too few severe complications occurred during the DCCT to establish this conclusion. Similarly, although fewer intensively treated than conventionally treated patients in the DCCT experienced cardiovascular events $(3,6)$, the numbers were too small to be conclusive and the differences were not statistically significant. Overall, relatively little is known about the development of cardiovascular disease in type 1 diabetes, although it is the major cause of mortality:

Currently available data on the evolution of long-term complications are limited by 1) failure to separate type 1 diabetes from type 2 diabetes in study populations; 2) reliance on cross-sectional studies that are prone to prevalence bias; 3) studies of small, selected populations with limited generalizability; and 4) relatively brief follow-up and significant attrition in prospective studies. Since most studies suggest that overt late-

Figure 1-Organization chart for the EDIC study. CBL, central biochemical laboratory; CERU, central ECG reading unit; CORU, central ophthalmologic reading unit; CURU, central ultrasound reading unit.
stage complications usually occur after $15-25$ years' duration of type 1 diabetes, further study of the DCCT cohort, with an average diabetes duration of 12 years at study end, would delineate the evolution of late-stage complications. In addition, the DCCT cohort offered the following advantages for a long-term follow-up study of advanced complications: 1) the early stages of these complications had been well characterized with reliable objective outcome measurements; 2) established and putative risk factors for cardiovascular complications had already been measured repeatedly; and 3) all of the subjects had been strongly advised to follow intensive treatment regimens after the conclusion of the DCCT. We therefore designed a protocol to examine the DCCT cohort in a prospective multicenter 10 -year observational study. The Epidemiology of Diabetes Interventions and Complications (EDIC) study began in January 1994, shortly after the closeout of the DCCT, and after approval of the EDIC protocol by the Director of the National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK). The EDIC study focuses on the interactions between established and putative risk factors for long-term microvascular, neurologic, and cardiovascular outcomes of type 1 diabetes, including prior diabetes treatment and the level of glycemic control during the DCCT.

Study objectives

The major study objectives include the following:

- To describe the development and progression of cardiovascular (coronary, peripheral, and cerebral) disease in type 1 diabetes.
- To study the effects and interactions of potential risk factors for cardiovascular disease in type 1 diabetes, including those established in nondiabetic and type 2 diabetic populations.
- To examine the long-term effects of differences in prior diabetes treatment (conventional versus intensive) during the DCCT on the subsequent development and progression of cardiovascular disease.
- To examine the development of abnormal lipid and lipoprotein levels over time, their relationship to metabolic and other variables, and their contribution, both independently and in conjunction with other risk factors, to the development of macrovascular diseases.
- To relate early degrees of microalbuminuria, therapeutic interventions, and other established risk factors to the subsequent development of clinical nephropathy.
- To study the rate of development of clinically significant neuropathy and its relationship to other complications and risk factors.
- To examine the transition from background to more severe stages of retinopathy, such as proliferative diabetic retinopathy (PDR), and its relationship to established and putative risk factors, including previous treatment, ongoing level of glycemia, hypertension, and renal insufficiency.
- To examine the long-term effects of differences in prior diabetes treatment during the DCCT on the development and progression of nephropathy, neuropathy, and retinopathy, refining estimates of the risks associated with varying levels of antecedent glycemic control.
- To examine the effect(s) of putative generic factors that may be identified in
the future on the development and/or progression of all complications in type 1 diabetes and their interactions with other risk factors.
- To observe the current health care provided to EDIC patients in the U.S. and Canada, including the implementation and maintenance of intensive therapy, and the associations between different types of medical care and health outcomes.
- To study health-related quality of life (HRQOL) and the relationship between HRQOL and the development of clinically significant complications.

RESEARCH DESIGN AND METHODS

Subjects

At the completion of the DCCT, subjects were informed of the purpose, procedures, benefits, and risks of the EDIC. Written informed consent to participate in EDIC was obtained from 96% of DCCT subjects. All clinically relevant measurements obtained during follow-up would be provided to EDIC subjects and their physicians.

Organization

The organizational structure of the EDIC study is designed to coordinate the activities of the committees, laboratories, units, and review groups, and to ensure careful conduct of the study by uniform adherence to the Protocol and Manual of Operations (7) (Fig. 1). Of the 29 DCCT clinics, 28 opted to participate as EDIC clinical centers (l of the 29 with relatively few patients was merged with its neighboring clinic). The organization of EDIC includes a clinical coordinating center, a data coordinating center, and four reading centers and laboratories (see ACKVOWLeDGMENTS for a listing of all EDIC participating centers, laboratories, and reading units). All study procedures and tests are performed in the EDIC clinical centers with standardized methods by trained and certified personnel. Analysis of samples and grading of eye photographs, carotid ultrasounds, and electrocardiograms (ECGs) are performed in the respective central laboratory or reading centers, using standardized quality-controlled methods.

Procedures and methods

Each subject has a standardized annual history and physical examination on the anniversary of randomization into the DCCT (Table 1). This examination is per-

Table 1-Schedule of follow-up examinations

Examinations (outcomes)	EDIC year									
	1	2	3	4	5	6	7	8	9	10
Cardiovascular (CABG, MI, angina, CHF, stroke, TIA)										
Standardized history (including family) and physical exam	X	X	X	X	X	X	X	X	X	X
ECG	X	X	X	X	X	X	X	X	X	X
Duplex carotid ultrasonography central review	X					X				x
Peripheral vascular (foot ulcer, amputation, bypass graft)										
Standardized history and physical exam	x	X	X	X	x	X	X	X	X	x
Ankle/arm index by Doppler	x									
Lipoprotein levels (hypercholesterolemia, hypertriglyceridemia)										
Total cholesterol										
HDL cholesterol	Scheduling of visits is a function of randomization date (alternate years)									
Triglycerides										
Calculated LDL cholesterol										
Nephropathic (renal failure, transplant, dialysis, elevated serum creatinine)										
Standardized history and physical exam	x	X								
Serum creatinine	X	X	X	X	X	X	x	X	X	
Glomerular filtration										
Albumin excretion rate	Scheduling of visits is a function of randomization date (alternate years)									
4-h standard creatinine clearance										
Neuropathy										
MNSI	X	X	X	X	X	X	X	X	X	X
$10-\mathrm{g}$ filament examination	X	X	X	X	X	X	X	X	X	X
Retinopathic (photocoagulation, vitrectomy, blindness, vitreous hemorrhage)										
Standardized history	X	x	X	X	X	X	X	X	X	x
Ophthalmological exam*										
Visual acuity*										
Fundus photographs*		ulin	visit	fu	of	dom	on			
Hypoglycemia (mortality/morbidity)										
Standardized history	X	X	X	x	X	X	X	X	X	X
Standardized history	X	x	X	X						
$\mathrm{HbA}_{\text {Ic }}$	X	x	X	X	x	X	X	x	X	X
Psychological										
Quality of life questionnaire (DQOL)	X		x		x		X		X	x
Health status questionnaire (SF-36)	x		x		x		x		X	X
Health care delivery										
Standardized questionnaire	X	x	X	x	x	x	X	x	X	X
Dietary										
Food frequency recall questionnaire	In conjunction with lipids									

*Ophthalmological exam, visual acuity, and fundus photographs to be done on the patient's 8th, 12 th, and 16 th anniversaries of randomization. CABG, coronary revascularization; CHF, congestive heart failure; DQOL, Diabetes Quality of Life; SF, short form; TIA, transient ischemic attack.
formed within 4 months of the anniversary date and includes detailed evaluation of overall health status, diabetes management, occurrence of diabetic complications, development of new diseases since the previous annual visit, and all medications used. Measures of health satisfaction and quality of life are obtained every other year.

Annual evaluations also include resting ECGs and Doppler ultrasound meas-
urement of ankle/arm blood pressure, as well as screening for peripheral neuropathy by both $10-\mathrm{g}$ filament examination (8) and administration of the Michigan Neuropathy Screening Instrument (MNSI) (9). A timed 4-h urine is collected in alternate years for measurement of albumin excretion rate and creatinine clearance; lipid profiles are obtained in the years that renal studies are not performed; and a dietary recall questionnaire is given in conjunction
with the lipid assessment. Dual B-mode Doppler ultrasound scans of the common and internal carotid arteries were carried out at entry into the EDIC study and are expected to be repeated at intervals of 5 years. Table 2 lists the specific methods used in EDIC.

DNA has been obtained from neripheral blood leukocytes in all subjects and stored as a long-term resource for potential analyses.

Table 2-Methods in EDIC

Measurement
Method or assay

Glycosylated hemoglobin
Serum creatinine
Urine creatinine
Urine albumin
Serum albumin
Serum cholesterol
Serum triglyceride
Serum HDL cholesterol
Calculated LDL cholesterol
12-lead resting ECG
Intimal-media wall thickness
Fundus photograph

Blood pressure
Systolic
Diastolic
Ankle-to-arm blood pressure ratio
Food frequency
Current medication
Hypoglycemia
Neuropathy
HRQOL

High-performance ion-exchange liquid chromatography Automated kinetic method with Jaffè reaction Automated kinetic method with Jaffè reaction Solid-phase fluoroimmunoassay
Thin-film adaption of a bromcresal colorimetric procedure Cholesterol oxidase, spectrophotometric
Glycerol-blanked glycerol kinase/glycerol oxidase, spectrophotometric
Magnesium dextran precipitation
Friedewald equation
Central reading using revised Minnesota Code
High resolution β-mode ultrasound graded centrally with standardized protocol
Central reading of seven-field stereo photographs using final ETDRS grading scale for retinopathy and macular edema

Sitting, right arm reading with sphygmomanometer
Resting systolic blood pressure with a Doppler ultrasonic instrument
Harvard Food Frequency; self-administered
EDIC Form 004; administered by study coordinator
Interview at annual visit
MNSI
HRQOL (DQOL, SF-36)

DQOL, Diabetes Quality of Life; SF, short form.

Quality control

Quality control procedures in the EDIC study include those in place internally in all the laboratories and reading centers as well as those implemented as part of EDIC data collection. The local clinic procedures that require training and certification include the performance of Doppler ankle-arm index. $10-\mathrm{g}$ filament test, renal studies, ECG recording, carotid ultrasound, and fundus photographs. All blood and urine tests undergo repeated assessments for analytic precision by assays of split-duplicate samples in the central laboratory: Splitduplicate analysis is also used to monitor grading of the carotid ultrasound recordings, ECGs, and fundus photographs.

Analytic procedures

General principles. Defined incident events are coded for analysis based on the measurements and evaluations noted above. Previously documented or treated events in the DCCT are risk factors and not incident events. Deaths and major morbid events will be classified by a classification
commituee composed of a cardiologist and two diabetologists who are masked to previous treatment assignment in the DCCT and current diabetes treatment. The definitions of these events are as follows:

- Cardiovascular disease: death secondary to cardiovascular disease or any sudden death judged not to be caused by hypoglycemia or other known reason, acute myocardial infarction (MI), silent MI appearing as a major new Q-wave abnormality on a routine ECG, initiation of thrombolytic therapy for suspected MI, coronary artery disease (CAD) requiring bypass surgery or angioplasty, or CAD confirmed by angiography or by a combination of angina and ischemia documented with noninvasive testing.
- Hypercholesterolemia: calculated LDL cholesterol $\geq 160 \mathrm{mg} / \mathrm{dl}$ on two occasions 24 months apart or the use of lipid-lowering medication for previously documented hypercholesterolemia as defined in the DCCT (6).
- Hypertriglyceridemia: serum triglyceride
$>400 \mathrm{mg} / \mathrm{dl}$ on two occasions 24 months apart or the use of lipid-lowering medication for previously documented hypertriglyceridemia as defined in the DCCT (6)
- Cerebrovascular disease: stroke or transient ischemic attack confirmed by angiography or noninvasive testing.
- Peripheral rascular disease (PVD): surgical amputation of a lower extremity necessitated by vascular disease, arterial vascular events requiring bypass or angioplasty, claudication with exercise testing or angiographic eridence of vascular disease, or an ankle-to-arm blood pressure ratio <0.8 or >1.4.
- Lower-extremity ulcer: a traumatic or nontraumatic excavation or loss of subcutaneous tissue in the foot or leg that requires medical or surgical treatment by a health professional in an office or hospital setting irrespective of whether the etiology is neuropathic, ischemic, or both.
- Hypertension: confirmed sitting systolic blood pressure $\geq 140 \mathrm{mmHg}$ and/or diastolic blood pressure $\geq 90 \mathrm{mmHg}$, or the use of antihypertensive medication for previously documented hypertension.
- Microalbuminuria: urinary albumin excretion of $\geq 28 \mu \mathrm{~g} / \mathrm{min}$ during the $4-\mathrm{h}$ timed collection.
- Albuminuria: urinary albumin excretion $\geq 208 \mu \mathrm{~g} / \mathrm{min}$ during the 4 -h timed collection.
- Renal insufficiency: serum creatinine ≥ 2 $\mathrm{mg} / \mathrm{dl}$, glomerular filtration rate $<70 \mathrm{ml}$. $\mathrm{min}^{-1} \cdot 1.73 \mathrm{~m}^{-2}$, or the need for dialysis or renal transplantation.
- Doubling of serum creatinine: doubling of centrally measured serum creatinine from DCCT baseline.
- Advanced retinopathy: PDR according to the final Early Treatment of Diabetic Retinopathy Sudy (ETDRS) grading scale (10).
- Blindness: loss of vision in one or both eves, defined as visual acuity of 20/200 or worse.
- Photocoagulation: focal or panretinal for macular edema or PDR.
- Severe hypoglycemia: events that require assistance from another individual, including episodes of seizure and/or coma.
- Diabetic ketoacidosis (DKA) an event characterized by hyperglycemia (>200 $\mathrm{mg} / \mathrm{dl})$ in the presence of ketonuria and acidemia requiring treatment at a health care facility:

Baseline. The baseline data for EDIC are defined as that collected during the first two visits (to provide the full complement of data, some of which was collected biannually) to an EDIC clinical center that occurred between 1 January 1994 and 31 December 1995. Those visits were scheduled as close as possible to the subject's DCCT randomization anniversary.

Data management

Data management in the EDIC study follows the principles established in the DCCT, but specific procedures take advantage of new technical advances.

Data management and statistical analysis are conducted using SAS software (SAS Institute, Cary, NC). Incoming data forms are keyed into SAS data files for the appropriate form types, then merged into the corresponding master files after new records are edited for possible data errors by SAS application programs.

Data forms are tracked through the data coordinating center by a check-off system that is reviewed at each step (log-in, keying, editing) to ensure that no forms are lost during paper handling. Lab result reports are distributed biweekly to all clinics. This system provides a mechanism for detecting errors and explaining irregularities in the study database.

Statistical analyses

Significance level. All significance tests for the comparisons (predominantly between the groups previously assigned to intensive and conventional therapy) will be two-sided. A Bonferroni adjustment (11) will be used to control for the multiple pairwise comparisons of treatment arms and the multiple primary outcomes. All results at $P<0.05$ will be considered significant.
Intention to treat. All hypothesis testing with regard to possible persistent effects of intensive therapy during the DCCT will adhere to the intention-to-treat approach, i.e., all data will be analyzed according to the participants' original DCCT treatment assignment regardless of subsequent treatment during EDIC. Epidemiologic analyses will use treatment assignment during the DCCT as one variable included in the study of risk factors and outcomes.
Stratification. Analyses may be stratified by retinopathy status at entry into the DCCT, duration of type 1 diabetes, $\mathrm{HbA}_{1 \mathrm{c}}$, age, sex, and other relevant factors. The original DCCT cohort was stratified into a primary
prevention cohort and a secondary intervention cohort based on duration of diabetes and the presence of retinopathy (3). Where similar results are obtained for the two cohorts, a single pooled analysis for all EDIC patients combined may be presented.

For outcomes collected during the EDIC follow-up period (starting with year 1 EDIC time, 1994), analyses of cumulative incidence will use standard life-table methods for grouped time intervals (12). These include the modified actuarial life table with tests of differences between groups, using the log-rank test, and analyses adjusting for other covariates, using the proportional hazards regression model (12). Some outcome measures obtained in the DCCT and also in EDIC, e.g., retinopathy, will be assessed at time points relative to the original randomization into the DCCT (i.e., DCCT time). Therefore, at any fixed point in EDIC time, DCCT time will vary from subject to subject.

When outcomes collected in DCCT time are analyzed starting from the date of initiation of the EDIC, subjects will have staggered gaps of unequal length in their periods of observation. Likewise, observations collected in EDIC time and analyzed in DCCT time will also have unequal gaps between assessments. In such cases, analyses of cumulative incidence will be performed using methods for interval-censored observations that allow for unequal intervals between visits. These include the Turnbull estimate of the survival (cumulative incidence) function (13) and the generalizations of the log-rank test and the proportional hazards regression model (14) for such interval-censored data.

In addition, longitudinal analyses of point prevalence will be conducted. Most such analyses will be conducted in DCCT time using multivariate methods for the analysis of prevalence of quantitative, ordinal, or qualitative measures. These include the Wei-Lachin test for qualitative observations (15), the method of generalized estimating equations (16), and longitudinal mixed-effects growth-curve models (17).

The incidence of single or recurrent events, such as hypoglycemia, will be summarized as a crude rate. Such rates will be presented as the number of events per 100 patient-years based on the ratio of the observed number of events to the total patient-years of exposure. The standard error for such rates will be computed allowing for overdispersion (18). The risk ratio (relative risk) will be used to summarize the difference between groups, and tests will be
based on the large-sample estimate of the variance of the log of relative risk (19). To account for the effects of covariates on the incidence rate, either the Poisson regression model (18) or the multiplicative intensity model (20) will be used. Analyses that assess the association between various outcomes and a time-dependent covariate, such as the $\mathrm{HbA}_{\mathrm{jc}}$ level over time, will use the appropriate regression models described above.

Power calculations

Estimates of the statistical power of inten-tion-to-treat comparisons of cause-specific mortality between the two original DCCI treatment groups after an additional 10 years of follow-up in EDIC are given in Table A1 of APPENDIX 1 . Estimates of 10 -year mortality among patients randomized to conventional treatment in the DCCT were based on the weighted average of age-specific mortality rates reported in ETDRS (F. Ferris, personal communication). Since the ETDRS reported 5-year mortality, the estimate was constructed in two stages by applying the appropriate ETDRS mortality rates to the expected number of survivors at the end of the first 5 -year period.

The estimated power of the EDIC to find a difference in the 10 -year prevalence of combined nephropathy outcomes (death from kidney failure, kidney transplant, renal dialysis, candidacy for renal transplant or dialysis, and clinical proteinuria) is shown in Table A4 of APPendix 1. These estimates are based on two-sided comparisons of the original DCCT treatment groups at a significance level of 0.05 . The 10 -year prevalence of this outcome among subjects randomized to the DCCT conventional treatment group was also based on ETDRS data stratified by age and duration of type 1 diabetes.

RESULTS

Recruitment of DCCT subjects into the EDIC

In January 1994, the 1,425 surviving DCCT patients were invited to participate in the EDIC; 1,375 subjects (96%) agreed to participate, of whom 687 had been originally assigned to intensive treatment and 688 to conventional treatment. The major demographic and clinical characteristics of the active EDIC participants and of the 50 subjects who chose not to participate are shown in Table 3. Compared with participants, the nonparticipants tended to have worse glycemic control at the completion

Table 3-Characteristics of EDIC participants compared with nonparticipants

Characteristic*	Participants	Nonparticipants	P value
n	1,375	50	-
Age (years)	33.6 ± 7.0	31.0 ± 7.7	0.0155
Sex (\% female)	48	45	NS
Duration of type 1 diabetes (years)	12.2 ± 4.8	11.6 ± 4.4	NS
Treatment group during DCCT (\% intensive)	50	30	0.0048
HbA $_{1 \mathrm{c}}$ at closeout of DCCT (\%)			
\quad Intensive group	7.4 ± 1.1	8.5 ± 1.6	0.0031
\quad Conventional group	9.1 ± 1.5	9.6 ± 1.4	0.1123
Debriefed at DCCT study's end (\%)	99	74	<0.0001
Care transferred to non-DCCT personnel (\%)	48	79	<0.0001

Data are means $\pm S D$ or $\% . P$ values for continuous variables are from Wilcoxon's rank-sum test; P values for categorical variables are from the contingency-table χ^{2} test.
of the DCCT, fewer had been debriefed, and the majority were no longer under the care of former DCCT personnel (Table 3).

EDIC baseline

Table 4 presents various risk factors for cardiovascular disease separately for men and women at EDIC baseline. The men and women were similar with respect to age, duration of type 1 diabetes, $\mathrm{HbA}_{1 c}$, and proportion who were currently smoking. As expected, the men and women differed on several risk factors. Hypertension, a low serum HDL cholesterol, and a high LDL cholesterol were more frequent in men. In Table 5, the baseline measurements of ankle-to-arm systolic blood pressure ratio (PVD) and of carotid artery intimal-medial thickness (atherosclerosis) are presented. stratified by sex and decade of age for EDIC patients. PVD, defined as ankle-to-arm systolic blood pressure ratio <0.8, although uncommon, was equally prevalent in men and women. There were no trends with age or duration of type 1 diabetes.

The average maximums of the carotid artery wall thickness for the common and internal carotid arteries were different between men and women ($P<0.0001$). Adjusting for height reduced, but did not eliminate, the difference ($P=0.0007$). A test of trend for maximurn wall thickness over decades of age was significant in all strata (P ≤ 0.0001). Attained duration of diabetes was associated with wall thickness in both carotid arteries in men ($r=0.13$ and 0.12 . $P<0.01$) but only in the internal carotid artery in women ($r=0.12, P<0.01$).

Table 6 describes diabetes management in the EDIC cohort in the first 24 months after DCCT closeout. After the completion of DCCT data collection, conventionally
treated subjects were offered, and strongly encouraged to accept, DCCT clinic help in implementing intensive therapy. Following this, an orderly transfer of diabetes care, either to personnel in the center (former DCCT or non-DCCT physicians) or to other
care providers was effected for all subjects. This transition took place between June and December of 1993. During the first 2 years after DCCI closeout, 69% of the original conventional group were using either multiple daily injections (MDI) or continuous subcutaneous insulin injection (CSII) therapy while 95% of those originally assigned to the intensive treatment group continued using MDI or CSII. Similar proportions of the two original DCCT treatment groups were using human insulin preparations, with the previous intensive group continuing to use more daily insulin. A higher proportion of the previous intensive group was performing ≥ 4 self-monitoring of blood glucose tests per day: Rates of severe hypoglycemia and DKA were comparable in the two groups, but a larger fraction of the DCCT intensive treatment cohort was classified as overweight (Table 5).

Figure 2 presents the distribution of $\mathrm{HbA}_{1 \mathrm{c}}$ for the intensive and conventional treatment groups at DCCT closeout and at

Table 4-Risk factors measured during the first 2 years of the EDIC study, based on the most recent observation from each patient

	Men	Women	P value
n (\%)	719 (52.4)	653 (47.6)	-
Age (years)	36.4 ± 6.6	35.4 ± 7.2	0.0068
Duration of type 1 diabetes (years)	14.3 ± 4.8	14.8 ± 5.0	NS
BMI (kg/min	26.6 ± 3.9	26.0 ± 4.2	0.0001
Overweight (\%)	30.9	31.8	NS
Waist-to-hip ratio	0.88 ± 0.06	0.77 ± 0.07	<0.0001
Insulin dose ($\mathrm{U} \cdot \mathrm{kg}^{-1} \cdot$ day $^{-1}$)	0.71 ± 0.25	0.69 ± 0.24	NS
$\mathrm{HbA}_{1 \mathrm{c}}$ (\%)	8.2 ± 1.3	8.3 ± 1.5	NS
Total cholesterol (mg/dl)	185.1 ± 35.6	188.1 ± 37.0	NS
Triglyceride (mg/dl)	96.8 ± 75.8	83.1 ± 73.3	0.0001
HDL cholesterol (mg/dl)	49.5 ± 12.0	59.2 ± 14.0	<0.0001
$<35 \mathrm{mg} / \mathrm{dl}$ (\%)	8.2	1.6	<0.0001
LDL cholesterol (mg/dl)	116.4 ± 30.8	112.1 ± 30.3	0.0083
$>130 \mathrm{mg} / \mathrm{dl}$ (\%)	30.6	26.0	NS
Hypertension (\%)	26.6	18.1	0.0002
Current cigarette smoker (\%)	22.7	19.9	NS
Exercise level			<0.001
Strenuous	10.3	2.9	
Vigorous	5.9	3.4	
Moderate	49.5	58.2	
Sedentary	34.3	35.4	
Current alcohol use (\%)	47.4	32.2	<0.001
Urinary albumin excretion (mg/24 h)	38.1 ± 118.4	41.8 ± 226.9	NS
DQOL total score	76.4 ± 9.4	75.3 ± 8.6	0.0184

Data are means $\pm S D$ or $\%, P$ values are for men versus women. Waist-to-hip ratio is based on natural waist circumference. Hypertension is percent diagnosed as hypertensive at any time during DCCT or EDIC and is defined as systolic blood pressure $\geq 140 \mathrm{mmHg}$ and/or diastolic blood pressure $\geq 90 \mathrm{mmHg}$ or use of antihypertensives. Alcohol use is percent reporting consumption of at least one alcoholic beverage per week. DQOL, Diabetes Quality of Life

Table 5-New measurements in the EDIC protocol
Systolic blood pressure ratio of resting ankle to arm
Prevalence of abnormal ankle-to-arm ratio (percent in any four ratios)

Maximum intimal-medial thickness
Percent Percent Percent of common and internal carotid artery

	Age decade	n	Right	Left	$\begin{aligned} & \text { Percent } \\ & <0.8 \end{aligned}$	$P(0.8)$	Percent<1.4	Percent either	of common and internal carotid artery		
									-	Common (mm)	Internal (mm)
Women*	20-29	154	1.08 ± 0.11	1.08 ± 0.13	2.6	0.9864	0.0	2.6	172	0.616 ± 0.073	0.583 ± 0.092
	30-39	289	1.11 ± 0.12	1.10 ± 0.13	2.8	0.1307	5.9	8.3	278	0.657 ± 0.081	0.632 ± 0.147
	40-49	202	1.09 ± 0.12	1.07 ± 0.11	3.5	0.7093	1.5	5.0	178	0.696 ± 0.079	0.719 ± 0.226
Men*	20-29	117	1.07 ± 0.11	1.08 ± 0.10	2.6		2.6	5.1	125	0.636 ± 0.059	0.629 ± 0.083
	30-39	351	1.11 ± 0.12	1.10 ± 0.12	1.1		3.7	4.8	350	0.684 ± 0.083	0.684 ± 0.114
	40-49	241	1.13 ± 0.13	1.12 ± 0.14	4.1		3.7	7.9	211	0.745 ± 0.104	0.806 ± 0.261

Data are n, means \pm SD, or \%. Dorsalis pedis and posterior tibral pressures were combined using an algorithm of Hiatt et al. (51). P values are for men vs. women. *P value for trend in percent <0.8 : women, 0.6171 ; men, 0.1513 . $P<0.0001$ for both common and internal intimal-medial thickness; all are from Wilcoxon's rank-sum test after linear adjustment for covariance with age.

EDIC years 1 and 2. Although the difference between the treatment groups narrowed, $\mathrm{HbA}_{1,}$ remained significantly lower in the intensive group ($P<0.0001$) at each time point.

Data completeness and timeliness

Of all expected clinic visits, 95% occurred, and no decline occurred between years 1 and 2. Typically; there was a 1 -month interval between the collection of each sample in the clinic and the feedback report to the clinic.

Data quality

The precision of analysis of HbA_{3}, and lipids and renal function, ECGs, carotid ultrasound, and fundus photographs during the initial 2 -year follow-up ranged from 0.88 (ECG) to $0.99\left(\mathrm{HbA}_{1 \mathrm{c}}\right.$, albumin excretion rate, serum cholesterol, and serum LDL cholesterol. The precision of these measurements is very similar to that observed over the 9 years of the DCCT.

CONCLUSIONS - The DCCT recruited 1,441 subjects with type 1 diabetes between 1983 and 1989 to a randomized clinical trial designed to examine the effects of intensive treatment compared with conventional treatment on the development and progression of early microvascular, neurologic, and other complications (3-6). The adherence of the subjects to the complex protocol was extraordinary, with $<3 \%$ loss to follow-up and $<3 \%$ non-study-mandated deviation from assigned treatment over the 10 years of the study: Afler the closeout of the DCCT, these subjects have continued to demonstrate their remarkable stability as a research cohort, and 96% of them are now enrolled in the EDIC study.

The generalizability of the findings in this study cohort to the population of type 1 diabetes is germane to the rationale for EDIC. A collaborative study between the DCCT and the Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) compared the DCCT cohort to a popula-tion-based type 1 diabetes cohort $(22,23)$ The EDIC cohort has a narrower age range (age at entry to EDIC is $\sim 17-50$ years vs. 16-78 in WESDR in 1994) and is healthier, with relatively few subjects having clinically significant diabetes complications. Comparisons of the conventionally treated DCCT subjects at baseline with the respec-
tive WESDR group revealed older age and older age at diagnosis, lower $\mathrm{HbA}_{1 \mathrm{c}}$, and more frequent insulin injections and monitoring in the DCCT cohort, but few other substantive differences between the populations. Moreover, the 4-year progression of retinopathy and its association with baseline HbA_{16} were similar for the two cohorts, except for a lower rate of progression in the DCCT secondary intervention cohort than in its WESDR counterpart, perhaps because of lower $\mathrm{HbA}_{\mathrm{Ac}}$ in the DCCT (23). Thus, the entire EDIC cohort is reasonably representative of the type 1 diabetic population, at least with respect to retinopathy:

Table 6-Diabetes management of EDIC cohort during the first 2 years of EDIC
DCCT treatment group assignment

	Intensive	Conventional	P value
n	687	688	-
Insulin delivery during EDIC			<0.0001
\quad CSII	57.0	12.6	
MDI	5.3	56.9	
One or two injections/day	0.1	30.3	
\quad Unknown	91.1	0.3	-
Human insulin (\% of subjects using)	0.75 ± 0.28	0.67 ± 0.20	<0.0001
Insulin dose (U $\cdot \mathrm{kg}^{-1} \cdot$ day ${ }^{-1}$)	46.4	36.4	0.0002
Self-monitored blood glucose ≥ 4 /day (\%)			
Hypoglycemia (rate per l00 patient-years)	6.3	7.1	NS
\quad Coma/seizure	25.4	25.7	NS
\quad Requiring assistance	2.68	2.37	NS
DKA (rate per lo0 patient-years)			
Overweight (\%)	32.5	29.7	NS
Men	38.4	25.2	0.0005
Women			

Data are means \pm SD. P values are from the contingency-table χ^{2} test for categorical variables, Wilcoxon's rank-sum test for continuous variables, and from a Wald test of the log-relative adjusted for overdispersion of event rates. Overweight is defined for men as BMI $\left(\mathrm{kg} / \mathrm{m}^{2}\right)>27.8$ from the second National Health and Nutrition Examination Survey (NHANES II) of 1976 to 1980 (50) and for women as BMI $\left(\mathrm{kg} / \mathrm{m}^{2}\right)>27.3$.

Figure 2-Distribution of $\mathrm{HbA}_{1 c}$ (intensive vs. conventional treatment group) at DCCT closeout and EDIC years 1 and 2. For each distribution, the median is shown by the white area with 25 th and 75 th percentiles shown by the boxes and 5 th and 95 th pecentiles shown by the bars.

CAD

With respect to potential risk factors for macrovascular disease, the DCCT excluded patients with hypertension, nondiabetic hyperlipidemia, and known CAD (3). The EDIC cohort provides an opportunity to examine a population of type 1 diabetic patients without obvious CAD risk factors at baseline, other than their diabetes, that has had careful prospective measurement of many of the CAD risk factors established in type 2 diabetic and nondiabetic populations. The randomized interventions during the DCCT might influence the development of CAD either directly, by altering glycemia, or indirectly, by altering lipid levels (6) or by changing the development of nephropathy (5). The DCCT did not show an effect of intensive treatment on blood pressure (6). In addition, other effects of intensive therapy, such as increased weight gain, which has persisted in the EDIC cohort previously treated with intensive therapy, might alter the risk for CAD. Therefore, randomized treatment assignment and $\mathrm{HbA}_{1 c}$ during the DCCT will be included as a covariate in analyses of $C A D$ outcomes.

At the end of the DCCT in 1993, the entire cohort had a mean age of 33 years
and mean durations of diabetes of 9 and 15 years in the primary prevention and secondary intervention cohorts, respectively. Consistent with their young age, the exclusion of patients with preexisting macrovascular risk factors, and the low incidence of nephropathy during the DCCT, only a small number of CAD events had occurred by the study's end (6). However, CAD events are likely to increase in frequency during the 10 -year follow-up of the EDIC study. By study's end, the mean age of the EDIC population will approach 43 years, and mean duration of diabetes will be 19 and 25 years in the primary prevention and secondary intervention cohorts, respectively. Based on estimates derived from previous studies (24-31), the prevalence of CAD as manifested clinically and/or as detected by ECG or exercise tolerance tests is likely to be $20-40 \%$ in the DCCT secondary intervention cohort. Because age appears to be more important than duration of diabetes for the risk of CAD, only a modest downward adjustment in expected prevalence (to $15-30 \%$) is required for the DCCT primary prevention cohort. Although clinical event rates may be further lowered by aggressive treat-
ment with antihypertensive and hypolipidemic agents during the course of EDIC, the use of carotid ultrasound to determine intimal-medial wall thickness will enhance the sensitivity for detecting atherosclerosis. In a recent study of type 1 diabetes, patients with a 10 -year history of better glycemic control exhibited significantly less arterial disease, as measured by carotid ultrasound, than poorly controlled patients (32).

PVD

PVD is also a major cause of morbidity, loss of productivity, and hospital expense and contributes to mortality in type 1 diabetes (33). The development of PVD and its relationship to potential risk factors in type 1 diabetes have not been determined definitively. Studies such as the Pittsburgh Epidemiology of Diabetes Complications Study provide data on which to base the expected prevalence of PVD in type 1 diabetes (24). As in CAD, attained age appears to be a more important predictor of PVD than duration of diabetes. For patients 18-29 years of age, PVD prevalence defined by an ankle-to-arm blood pressure ratio <0.8 is $2-4 \%$ for diabetes duration ranging from $5-9$ years to $25-29$ years, compared with 18% for patients aged >30 years with similar duration. A prevalence of 16% was found in a sample of type 1 diabetic patients from a Seattle, Washington, registry with a mean age of 34 years and a mean duration of diabetes of 17 years. The prevalence of PVD increased from ~ 12 to 40% between the ages of 34 and 45 (32). A threefold greater prevalence of PVD in women than in men has been observed, with smoking and hypertension (24) and retinopathy (34) identified as potential risk factors.

Based on these data, we estimate that the cumulative prevalence of PVD detected by ankle-to-arm blood pressure ratios at the end of EDIC will be 32% in the primary prevention cohort and 44% in the secondary intervention group of the DCCT. To ascertain accurately and objectively the development of PVD, we have implemented measurement of the ankle-to-arm blood pressure ratio, a sensitive and specific method that is relatively easy to apply and standardize in the context of a multicenter study.

Cerebrovascular disease

The relatively low frequency of stroke compounded by the previous lack of widely available sensitive noninvasive diagnostic
methods has made the study of cerebrovascular disease in type 1 diabetes problematic. Although it is assumed that cerebrorascular disease is more common in the diabetic population than in the nondiabetic population, there are few reports of its prevalence $(35,36)$.

The 30 -sear-old data from the Joslin Clinic suggest that cerebrovascular disease accounts for 6.8% of deaths in diabetic patients with diabetes onset at age <20 years (37). Cerebrovascular disease also accounted for 7% of deaths among youthonset Danish diabetic patients, a 50% higher rate than the level in similarly aged nondiabetic subjects (36). Neither study included sufficient data on vascular disease risk factors or chronic glycemia to permit analysis. More current data from the ETDRS indicate an increasing frequency of strokes with increasing age in their type 1 diabetic population (F. Ferris, personal communication). By extrapolation of the ETDRS data, the prevalence of stroke in the age range of the EDIC cohort at the end of 10-year follow-up will be $\sim 6-8 \%$.

This relatively low anticipated prevalence of cerebrovascular disease events may yield too few cases to analyze meaningfully. However, noninvasive measurement of the carotid artery wall thickness provides a relatively accurate and specific means of quantifying carotid atherosclerosis. Highresolution B-mode ultrasonography can be performed with standardized methods at multiple centers with a high degree of reproducibility and acceptable center-tocenter variability (38). The quality of the data obtained in the EDIC cohort at baseline suggests that this method will provide a useful and reproducible measurement of carotid antery wall thickness as it changes over time (39).

Diabetic nephropathy

Because of the relatively brief duration of type 1 diabetes in the DCCT cohort and the exclusion of patients with proteinuria, the patient cohort recruited experienced only a small number of advanced renal events (clinical grade proteinuria, $n=55$, and/or renal insufficiency, $n=2$) by study's end. Whether the demonstrated decrease in development of microalbuminuria and clinical albuminuria with intensive therapy translates into a decrease in more adranced renal disease is a clinically important question that will be answered in the EDIC study: Previous observational studies have shown that the yearly incidence of
clinical nephropathy (i.e., $>500 \mathrm{mg}$ proteinuria per day) begins to rise at 10 years duration of type 1 diabetes and reaches a peak between 11 and 15 years. In the ETDRS, renal insufficiency requiring dialysis or transplantation developed within 5 years in 12.9% of subjects with duration of type 1 diabetes between 11 and 15 years at entry and in 8.7% of subjects with a duration between 15 and 20 years (F . Ferris, personal communication). Thus, $20-25 \%$ of EDIC patients who had diabetes of >11 years' duration would be predicted to develop renal insufficiency over a 10 -year follow-up during the EDIC study. The implementation of preventive and therapeutic modalities, such as treatment of hypertension or the use of ACE inhibitors, will be tracked and can be adjusted for by multivariate analysis.

Advanced diabetic retinopathy

The EDIC will study the development of more advanced retinopathy in the DCCT cohort. Longitudinal and cross-sectional studies suggest a progressive increase in diabetic retinopathy from background to preproliferative to proliferative stages $(22,40,41)$. The baseline degree of retinopathy and, in particular, the number of microaneurysms and retinal hemorrhages are high-risk factors for later development of PDR (22). Therefore, the demonstration by the DCCT of a beneficial effect of intensive insulin treatment on progression from no retinopathy to background retinopathy and ultimately to preproliferative and severe retinopathy suggests that glycemic control should have a similar protective effect in PDR with highrisk characteristics. Long-term study of the EDIC population should address this question directly Older retrospective studies indicate that the period of most rapid development of PDR begins at $10-13$ years of duration (41). At closeout, the DCCT cohort had a mean duration of 12 years. From the prospective WESDR study results, we can expect $\sim 20 \%$ of the EDIC cohort to develop PDR (and $4-5 \%$ to reach high-risk characteristics) in each 5-year segment of the study. A higher proportion of these events would be expected to occur in the original DCCT secondary intervention group than in the primary prevention group. Other factors have been demonstrated to contribute to the risk of retinopathy progression, including higher diastolic blood pressure (42), renal insufficiency and microalbuminuria (43), and duration of
diabetes (22). Certain HLA haplotypes have been reported to be associated with higher risk $(44,45)$. Of particular interest, the DCCT has now demonstrated concordance for severity of retinopathy within multiplex families with type 1 diabetes (46). How these risk factors interact with glycemic control will be addressed in the EDIC study.

Value of extended follow-up of a clinical trial

The potential scientific gains of conducting extended observational follow-up of subjects from completed randomized clinical trials have been summarized (47,48). These include the following: 1) additional beneficial or adverse effects of a treatment regimen on more slowly developing, but possibly more serious. consequences may be discovered (an example is the demonstration by a 9 -year extended follow-up that nicotinic acid reduced coronary heart disease mortality and all-cause mortality after the original 6 -year randomized clinical trial had demonstrated a decrease in MIs but not in mortality [49]); 2) particular subgroups with differential treatment benefits may be identified, generating new hypotheses and new randomized clinical trials; and 3) acquisition of up-to-date natural history data in the context of community treatment can help in the design of future intervention trials.

While there are potential problems in extended follow-up studies, EDIC may have limited. if not eliminated, them (47.48). First, the design and data to be collected are subject to bias if they are based on knowledge of results from the randomized trial itself. However, the EDIC protocol was largely developed before unmasking of the DCCT results and was, therefore, uninfluenced by them. Second, data acquired with extended follow-up may lack completeness due to subject unwillingness to undergo sufficiently frequent or rigorous examination, diminished resources, and/or long-term subject attrition. The experience of EDIC thus far suggests that subject adherence has not declined, and the study is sufficiently supported by available resources to anticipate nearly complete data collection. Third, future differences in outcomes may be blurred by treatment crossovers, by introduction of new treatments, or by withdrawal from treatments because treatment is not systematically regulated during the post-trial follow-up. The former intensive
treatment group has largely continued on that regimen, albeit with a modest increase in average $\mathrm{HbA}_{1 \mathrm{c}}$. The former conventional treatment group was appropriately encouraged to cross over to intensive treatment based on the results of the DCCT. It is, therefore, possible that the narrowed differences between the two groups with regard to treatments and in the resultant mean $\mathrm{HbA}_{1 \mathrm{c}}$ levels may partly obscure differences in long-term outcomes over time. Multivariate analyses can help to identify such confounding (4). Estimates of the statistical power to detect differences in outcomes during extended follow-up by continuation of intention-to-treat analysis are subject to uncertainty with regard to future dropout rates, introduction of new therapies that will influence measured outcomes, or inadequacy of the natural history data that were available for the power calculations. None of these potential difficulties are likely to be limiting in EDIC. Subject dropout can be strongly influenced by the strong bonds that developed with the subjects during the DCCT (5). Moreover, our subjects realize that EDIC is a unique study and do not seem inclined to join other studies. It may be difficult to ascertain accurately the rigor with which each of two previous randomized treatments is actually used by subjects during a follow-up study. In EDIC, $\mathrm{HbA}_{\mathrm{Ic}}$ measurements are a reasonable surrogate for the diabetes treatment regimens themselves. Since glycemic differences were the dominant factor that generated treatment-group differences in outcomes during the DCCT, monitoring of $\mathrm{HbA}_{1 c}$ will permit analysis of glycemia as a risk factor. The EDIC investigators and the NIDDK have concluded that the potential weaknesses of extended fol-low-up studies are greatly outweighed by the significant value of continued systematic observation of the DCCT cohort and that the EDIC is a valuable natural history study of a cohort previously enrolled in a controlled clinical trial

In conclusion, the EDIC study successfully enrolled 96% of the surviving DCCT cohort in a long-term study that will focus on late-occurring more severe micro- and macrovascular complications of diabetes. EDIC has achieved a high degree of baseline data collection using reliable quality-controlled measurements. The cohort has been comprehensively characterized at baseline in terms of the presence or absence of micro- and macrovascular complications of type 1 diabetes, the major
recognized risk factors for these complications, preceding and current levels of chronic glycemia, and treatment. The study is adequately powered to examine hypotheses related to progression of cardiovascular disease, nephropathy, neuropathy, and retinopathy.

Acknowledgments - Participants in EDIC include the following: Study chairs: S. Genuth, D. Nathan; Albert Einstein College of Medicine H. Shamoon, H. Duffy; Case Western Reserve University: B. Dahms, L. Mayer; Comell University Medical Center: D. Brillion, M. Lackaye; Henry Ford Health System: F. Whitehouse, D Kruger; International Diabetes Center: R Bergenstal, M. Johnson; Joslin Diabetes Center: A. Jacobson, J. Doyle, M. Waters; Massachusetts General Hospital: D. Nathan, S. Crowell, J. Godine, C. McKitrick; Mayo Foundation: J. Service, G. Ziegler; Medical University of South Carolina: J. Colwell, D. Wood, R. Maytield; Northwestern University: M. Molitch, B. Schaefer; University of California, San Diego: O. Kolterman, G. Lorenzi; University of Iowa: W. Sivitz, M. Bayless; University of Maryland School of Medicine: D. Counts, A. Kowarski (past), D. Ostrowski; University of Michigan: D. Greene, C. Martin; University of Minnesota: J Bantle, B. Rogness; University of Missouri: D Goldstein, A. Smith; University of New Mexico: D. Schade, C. Johannes; University of Pennsylvania: S. Schwartz, B.J. Maschak-Carey; University of Pittsburgh: T. Orchard, N. Silvers; University of South Florida: J. Malone, A. Mangione; University of Tennessee: A. Kitabchi, M.B. Murphy; University of Texas Southwestern University Medical Center: P. Raskin, S. Strowig University of Toronto: B. Zinman, A. Barnie; University of Washington: J. Palmer, J. Ginsberg University of Western Ontario: J. Dupre, J Harth; Vanderbilt University: R. Lorenz, J. Lipps; Washington University, St. Louis: N, White, J Santiago (deceased), L. Levandoski; Yale University School of Medicine: W. Tamborlane, P. Gatcomb; Clinical coordinating center (Case Western Reserve University): B. Dahms, P. Corcoran, J. Quin; Data coordinating center (The

George Washington University Biostatistics Center): J. Lachin, P. Cleary, D. Kenny, L. Diminick, D. Lamas; National Institute of Diabetes and Digestive and Kidney Disease program office: C. Cowie, R. Eastman; Central fundus photograph reading center (University of Wisconsin): M. Davis, L. Hubbard, P. Geithman, J. Brickbauer, L. Kastorff, M. Neider; Central biochemistry laboratory (University of Minnesota): M. Steffes, J. Bucksa, B. Chavers; Central carotid ultrasound unit (New England Medical Center): D. OLeary; Central electrocardiogram reading unit (University of Minnesota): R. Crow, C. O'Donnell; Extemal advisory committee: G. Weir (Chair), C. Clark, R. Digostino, M. Espeland, B. Klein, H. Jacobson, T. Manolio, L. Rand, D. Singer, M. Stern Witing team: H. Shamoon (Chair), P. Cleary, A Barnie, S. Genuth, C. Maffin, W. Tamborlane, J. Wesche; and Editor, EDIC publications: D Nathan

APPENDIX 1

Estimated power of mortality comparisons in the EDIC patient population

Tables Al-A3 provide estimates of the statistical power of intent-to-treat comparisons of mortality between the two randomized treatment groups of the DCCT after an additional 10 years of follow-up in the EDIC study. These estimates are based on a simple test of proportions after 10 years of observation. Survival analysis may provide a more powerful test of treatment differences, but the increase in power is difficult to estimate without making untestable assumptions about the future shapes of the respective hazard functions.

The 10 -year mortality among patients randomized to conventional treatment in the DCCT was estimated as the weighted average of the age-specific mortality rates reported by the ETDRS, shown in APPENDIX 2. Since the ETDRS reported 5-year mortality, the estimate was constructed in two

Table Al-All-cause mortality

	Assumed treatment effect						
n	20%	25%	30%	35%	40%	45%	50%
	0.173	0.249	0.344	0.453	0.570	0.684	0.786
350	0.191	0.278	0.384	0.504	0.627	0.741	0.837
400	0.209	0.307	0.423	0.552	0.678	0.790	0.877
450	0.227	0.335	0.461	0.596	0.724	0.831	0.908
500	0.246	0.362	0.498	0.637	0.764	0.864	0.932
550	0.264	0.389	0.532	0.675	0.799	0.892	0.950
600	0.281	0.416	0.565	0.710	0.830	0.914	0.964
650							

The assumed combined 10-year mortality in the DCCT conventional group is 11.8%.

Table A2-Mortality due to CAD

n	20%	25%	30%	35%	40%	45%	50%
350	0.138	0.192	0.262	0.346	0.441	0.544	0.647
400	0.150	0.213	0.292	0.386	0.491	0.600	0.705
450	0.163	0.234	0.322	0.426	0.538	0.651	0.755
500	0.176	0.255	0.352	0.464	0.582	0.697	0.798
550	0.189	0.275	0.381	0.500	0.623	0.738	0.834
600	0.202	0.296	0.409	0.535	0.661	0.774	0.865
650	0.215	0.316	0.437	0.568	0.695	0.806	0.890

The assumed combined 10 -year mortality in the DCCT conventional group is 8.7%.

Table A3-Mortality due to stroke

	Assumed treatment effect						
n	20%	25%	30%	35%	40%	45%	50%
350	0.060	0.066	0.074	0.083	0.095	0.109	0.126
400	0.061	0.068	0.077	0.088	0.102	0.118	0.137
450	0.063	0.070	0.080	0.093	0.108	0.127	0.148
500	0.064	0.073	0.084	0.098	0.115	0.135	0.160
550	0.065	0.075	0.087	0.103	0.122	0.144	0.171
600	0.067	0.077	0.091	0.108	0.128	0.153	0.182
650	0.068	0.080	0.094	0.113	0.135	0.162	0.194

The assumed combined 10-year mortality in the DCCT conventional group is 1.1%.

Table A4-Combined renal outcomes

	Assumed treatment effect						
n	20%	25%	30%	35%	40%	45%	50%
350	0.245	0.360	0.495	0.633	0.760	0.860	0.929
400	0.273	0.403	0.548	0.692	0.813	0.902	0.956
450	0.301	0.443	0.598	0.742	0.856	0.932	0.973
500	0.328	0.482	0.643	0.786	0.890	0.953	0.984
550	0.355	0.520	0.685	0.823	0.917	0.968	0.991
600	0.382	0.555	0.723	0.854	0.937	0.979	0.994
650	0.408	0.598	0.756	0.881	0.953	0.986	0.997

The assumed 10 -year prevalence in the DCCI conventional group is 17.4%. Adapted from the EDIC Data Coordinating Center Manual of Operations (7).

Table A5-The 5-year mortality in the ETDRS

	Age at entry (years)				
	$18-29$	$30-34$	$35-39$	$40-44$	$45+$
n	609	262	209	132	232
Cause of death					
All causes	2.0	4.6	7.2	6.1	13.4
CAD	0.8	3.1	5.3	4.6	11.2
Stroke	0.2	0.8	0.5	0.8	0.4

Data are (\%). Adapted from the EDIC Data Coordinating Center Manual of Operations (7).

Table A6-Ages of EDIC participants at DCCT closeout

Age range (years)	All patients	Conventional group
$17-24$	172	95
$25-29$	244	122
$30-34$	348	185
$35-39$	340	173
$40-44$	249	123
$45+$	74	32

Data are n
stages by applying the appropriate ETDRS mortality rates to the expected number of survivors at the end of the first 5 -year period.

Alternative hypotheses are expressed as the anticipated reduction in the risk of death associated with assignment to intensive therapy during the DCCT. It is assumed that all tests will be two-sided at the 0.05 significance level.

Estimated power of intent-to-treat comparisons of combined nephropathic outcomes in the EDIC

Table A4 describes the estimated power of the EDIC to find a difference in the combined 10-year prevalence of death from kidney failure, kidney transplant, renal dialysis, awaiting renal transplant or dialysis, and clinical proteinuria. Once again, they are based on two-sided comparisons of the original DCCT treatment groups at a significance level of 0.05 . ETDRS data stratified by age and duration of type 1 diabetes were used to estimate the 10 -year prevalence of this outcome among patients randomized to the conventional group of the DCCT.

APPENDIX 2 - Data on 5-year mortality in the ETDRS and the ages of EDIC participants at DCCT closeout can be found in Tables A5 and A6.

[^6]and progression of long-term complications in insulin-dependent diabetes mellitus: the Diabetes Control and Complications Trial. N Engl JMcd 329:977-986, 1993
4. DCCT Research Group: Prevention of neuropathy: the effect of intensive diabetes therapy on the development and progression of neuropathy in the DCCT. Ann Intem Med 122:564-568, 1995
5. DCCT Research Group: Effect of intensive therapy on the development of diabetic nephropathy in the DCCT. Kidney Int 47:1703-1720.1995
6. DCCT Research Group: The effect of intensive diabetes management on macrovascular events and risk factors in the DCCI. Am J Cardiol 75:894-903. 1995.
7. EDIC Data Coordinating Center: Epidemiologr of Diabetes Interventions and Complications Protool and Mantal of Operations. Washington, DC. Biostatistics Center, The George Washington University: 1995
8. Stevens MJ, Edwards ME Foster AVM. Warkins PJ: Selective neuropathy and pressured vascular response in the diabetic charcot foot. Diabetologia 35:148-154. 1992
9. Feldman EL, Stevens MJ. Thomas PK. Brown MB. Canal N. Greene DA: A practical two-step quantitative clinical and electrophesiological assessment for the diagnosis and staging of diabetic neuropathy: Diabetes Care 17:1281-1289, 1994
10. ETDRS Research Group: Grading diabetic retinopathy from stereotopic color fundus photographs: an extension of the modified dirlie House Classification: ETDRS repon No. 100. Ophthalmology 98:786-806, 1991
11. Abt K: Problems of repeated significance lesting. Controlled Clin Trials 1:377-381, 1981
12. Cox DR: Regression models and life tables. JR Stat Sox Sertes B 3+187-220, 1972
13. Tumbull BW: The empirical distribution function with arbitrarily grouped, censored, and truncated data $J R$ Stat Soc Series B 38:290-295. 1976
14. Finkelstein DII: A proportional hazards model for interval-censored failure time data. Biometrics $42: 8+5-85+, 1986$
15. Lachin JM, Wei LJ: Estimators and tests in the analysis of nonindependent 2×2 tables wih partially missing observations. Biometrics $+4: 513-528,1988$
16. Zeger SL, Liang K Longitudinal data analysis for discrete and continuous outcomes. Biometrics $+2: 121-130.1986$
17. Laird NM. Ware JH: Random-effects models for longitudinal data. Biometrics 38 : 963-97+. 1982
18. McCullogh P, Nelder JA: Gencraliad Linear Models. 2nd ed. New York. Chapman \& Hall, 1082
19. Fleming TR. Harrington DP: Counting Procses and Surval Analves. New York. John Wiles: 1991
20. Breslow NE, Day NE: Statistical Metheds in Cancer Researh, Volume II: The Design and Analysis of Cohort Studies. Lyon, France. International Agency for Research in Cancer (London, Oxford University Press). 1987
22. Klein R, Klein BEK, Moss SE, Davis, MD. DeMets DL: The Wisconsin Epidemiologic Study of Diabetic Retinopathy: Arch Ophthalmol 107:237-243, 1989
23. DCCT Research Group, Klein R, Moss S: A comparison of the study populations in the Diabetes Control and Complications Trial (DCCT) and the Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR). Arh Intem Med 155:745-754. 1995
24. Orchard TJ, Dorman JS, Maser RE, Becker DJ. Drash AL, Ellis D. LaPorte RE, Kuller I.H Prevalence of complications in IDDM by sex and duration: Pitisburgh Epidemiology of Diabeles Complications Study II. Diabetes 39:1116-1124, 1990
25. Krolewski AS. Kosinski EJ, Warram JH. Leland OS, Busick EJ, Asmal AC. Rand LI, Christlieb AR, Bradley RF, Kahn CR: Magnitude and determinants of coronary attery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am I Cardiol 59 : 750-755, 1987
26. Jensen T, Borch-Johnsen K, KofoedEnevoldsen A, Deckert T: Coronary heart disease in young type I (insulin-dependent) diabetic patients with and without diabetic nephropathy: incidence and risk factors. Diabetologia 30:144-148, 1987
27. Deckert T, Feldt-Rasmussen B, BorchJohnsen K, Jensen T, Kofoed-Enevoldsen A: Albuminuria reflects widespread vascular damage: the Steno hypothesis. Diabetologia 32:219-226, 1989
28. Fisher BM, Gillen G. Lindop GBM, Dargie HJ. Frier BM: Cardiac function and coronary arteriography in asymptomatic type 1 (insulin-dependent) diabetic patients: evidence for a specific diabetic heart disease Diabetologia 29:706-712, 1986
29. Koistinen MJ: Prevalence of asymptomatic myocardial ischaemia in diabetic subjects. BMI 301:92-95, 1990
30. Gerson MC, Khoury JC. Hertzberg VS. Fischer EE, Scott RS: Prediction of coronary artery disease in a population of insulinrequiring diabetic patients: results of an 8 year follow-up study: Am Heart J 116 : 820-826, 1988
31. Persson G: Exercise tests in male diabetics. Acta Med Sciand Suppl 305:7-23, 1977
32. Jensen-Urstad KJ, Reichard PG, Rosfors J5. Lindblad LEL, Jensen-Urstand MT: Farly atherosclerosis is retarded by improved long-term blood glucose control in patients with IDDM Diabetes 45:1253-1258, 1996
33. Palumbo PJ, Melton LJ: Peripheral vascular disease and diabetes. In Diabetes in America. 2nd ed. Harris Ml, Cowie CC, Stern MP. Boyko EJ, Reiber GE, Bennett PH, Eds.

1995 (NlH publ no. 95-1468)
34. Riccardi G, Vaccaro O, Riveliese A, Romano G, Cambri
, Rubba P, Pauciullo P, Greco G, lovine L... Mancini M: Association between retinopathy and impaired peripheral arterial circulation in insulin dependent diabetic patients. Arteriosclerosis 8:509-514. 1988
35. Carter SA: Clinical measurement of systolic pressures in limbs with arterial occlusive disease JAMLA 207:1869-187+, 1969
36. Deckert T. Poulsen JE. Larsen M: Prognosis of diabetics with diabetes onset before the age of 31. Diabetologia 1463-70, 1978
37. Entmacher PS. Root HF Marks HH: Longevily of diabetic patients in recent years. Diabetes 13:373-377. 1964
38. Riley WA, Bames RW. Bond MG. Evans G, Chambless LE. Heiss G: High-resolution B-mode ultrasound reading methods in the Atherosclerosis Risk in Communities (ARIC) cohert. J Neuromag 1:168-172, 1991
39. Zinman B, Cleary P. OLeary D, Orchard T, for the EDIC Study Group: The effect of intensive diabetes treatment on carotid artery wall thickness in the Epidemiology of Diaberes Interventions and Complications (Abstract). Diabetes 45 (Suppl. 2) 188А. 1996
40. Rand Ll. Krolewski AS, Aiello LM, Warram JH. Barker RS, Maki T: Muliple factors in the prediction of risk of proliferative diabetic retinopathy: N Engl J Med 313: 1+33-1438, 1985
41. Krolewski AS. Warram JH, Rand LI, Christlieb AR, Busick EJ, Kahn CR: Risk of proliferative diabetic retinopathy in juve-nile-onset type I diabetes: a 40 -yr follow-up study: Diabetes Car 9:443-452. 1986
42. Janka HU. Warram JH. Rand LI, Krowlewski AS: Risk factors for progression of background retinopathy in long-standing IDDM Diabetes 38:460-+6+. 1989
43. Winocour PH. Durrington PN, Ishola M, Anderson DC. Cohen H: Influence of proteinuria on vascular disease. blood pressure, and lipoproteins in insulin-dependent diabetes mellitus. BMJ 294:1648-1651, 1987
44. Dornan TL, Ting A. McPherson CK, Peckar CO, Mann JL. Turner RC, Monis PJ: Genetic susceptibility to the development of retinopathy in insulin-dependent diabetics. Diabetes 31:226-231. 1982
45. Cruickshanks KJ, Wadheim CM, Moss SE, Roth M-P. Riley WJ, Maclaren NK, Langfield D, Sparkes RS, Klein R. Rotter JI: Genetic marker associations with proliferative retmopathy in persons diagnosed with diabetes before 30 mr of age. Diabetes 41:879-885, 1992
46. The Diabetes Control and Complications Trial Research Group: Clustering of longterm complications in families with diabetes in the Diabetes Control and

Complications Trial. Diabetes 46:18291839, 1997
47. Holme 1: Extension of clinical trials: 10 1/2 year follow-up of the Multiple Risk Factor Intervention Trial. Circulation 82:18571858, 1990
48. Kannel WB: Coronary Artery Surgery Study revisited: limitation of the intent-to-treat
principle. Circulation 82:1859-1862, 1990
49. Canner PL, Berge KG, Wenger NK, Stamler J, Freedman L, Prineas RJ, Friedewald W, for the Coronary Drug Research Group: Fifteen year mortality in coronary drug project patients: long term benefit with niacin. J Am Coll Cardiol 8:1244-1245, 1986
50. Najjar MF, Rowland M: Anthropometric
reference data and prevalence of overweight, United States, 1976-1980. United Health Stat 11:1987, No. 230
51. Hiatt WR, Marshall JA, Baxter J, Sandoval R, Hildebrandt W, Kahn LR, Hamman RF: Diagnostic methods for peripheral arterial disease in the San Luis Valley Diabetes Study. J Clin Epidemiol 43:597-606, 1990

APPENDIX B

SAS 9.1 Log for programming code submitted for the replication of results in Tables 3-6 of EDIC Baseline Paper

```
NOTE: Copyright (c) 2002-2003 by SAS Institute Inc., Cary, NC, USA.
```

NOTE: SAS (r) 9.1 (TS1M3)
Licensed to RESEARCH TRIANGLE INSTITUTE, Site 0047670011.
NOTE: This session is executing on the XP_PRO platform.
NOTE: SAS 9.1.3 Service Pack 3
NOTE: SAS initialization used:
real time $\quad 1.62$ seconds
cpu time $\quad 0.37$ seconds
1 * Filename: EDICbsln.SAS
2 Location:

Rtints23\niddk2\05_Users \Sylvia\DCCT_EDIC\IntegCheck\EDIC_bsln
3 Project: NIDDK Data Repository -- Dataset Integrity Checks
4 By: Sylvia Tan
5 Purpose: Analysis of integrity of EDIC Baseline archived
dataset in the NIDDK Data
5 ! Repository
6 Compare results to tables in paper published by
7 DCCT-EDIC Research Group in 1999 (Diabetes Care, [22(1)])
8 Last updated: 7/11/07 *;
9
10 options ps=500 ls=180 nonumber formchar='|----|+\---+=|-^<>*'
mprint
10 ! orientation=portrait;
11
12 libname EDICBase "C:\DATA\NIDDK\EDICbase\DSIC";
NOTE: Libref EDICBASE was successfully assigned as follows:
Engine: V9
Physical Name: C:\DATA\NIDDK\EDICbase\DSIC
13 libname EDICBa_x xport
13 !
" $\backslash \backslash$ Rtints23\niddk2\03_Data_And_Tools\Database\Databases \DCCT_EDIC \backslash DCCT Old
13 ! Versions \EDIC_NEW\Phase3\Study1 \edicBASE.xpt";
NOTE: Libref EDICBA_X was successfully assigned as follows:
Engine: XPORT
Physical Name:
\backslash Rtints23\niddk2\03_Data_And_Tools\Database\Databases \DCCT_EDIC\DCCT Old
Versions \EDIC_NEW\Phase3\Study1 \edicBASE.xpt
14 libname library

14 ! Old Versions 14 EDIC_NEW \backslash All Formats";
NOTE: Libref LIBRARY was successfully assigned as follows:
Engine: V9
Physical Name:
\backslash Rtints23\niddk2\03_Data_And_Tools \Database\Databases \DCCT_EDIC\DCCT Old
Versions \EDIC_NEW\All Formats
15
16 * create SAS dataset from XPT file *;
17 proc cimport data=EDICBase.EDICbase infile=EDICBa_x; run;

```
NOTE: Proc CIMPORT begins to create/update data set EDICBASE.EDICbase
NOTE: Data set contains 46 variables and 1428 observations.
    Logical record length is 304
NOTE: PROCEDURE CIMPORT used (Total process time):
    real time 1.85 seconds
    cpu time 0.03 seconds
18
19 data EDICBASE; set edicbase.edicbase;
20
21
22
23
24
*)
25 ods rtf file="C:\DATA\NIDDK\EDICbase\DSIC\EDICBASE_T3.rtf"
style=sasdocprinter;
NOTE: Writing RTF Body file: C:\DATA\NIDDK\EDICbase\DSIC\EDICBASE_T3.rtf
26
27 title EDIC Bsln Paper - Replicate Table 3;
NOTE: There were }1428\mathrm{ observations read from the data set EDICBASE.EDICBASE.
NOTE: The data set WORK.EDICBASE has }1428\mathrm{ observations and 46 variables.
NOTE: DATA statement used (Total process time):
    real time 2.43 seconds
    cpu time 0.46 seconds
28 proc freq; tables in_edic; run;
NOTE: There were 1428 observations read from the data set WORK.EDICBASE.
NOTE: The PROCEDURE FREQ printed page 1.
NOTE: PROCEDURE FREQ used (Total process time):
    real time 0.18 seconds
    cpu time 0.01 seconds
29 proc means maxdec=1 n mean std; var exit_age exit_dur; class
in_edic; run;
NOTE: There were }1428\mathrm{ observations read from the data set WORK.EDICBASE.
NOTE: The PROCEDURE MEANS printed page 2.
NOTE: PROCEDURE MEANS used (Total process time):
        real time 0.12 seconds
        cpu time 0.01 seconds
30 proc nparlway wilcoxon; var exit_age exit_dur; class in_edic; run;
NOTE: There were }1428\mathrm{ observations read from the data set WORK.EDICBASE.
NOTE: The PROCEDURE NPAR1WAY printed pages 3-4.
NOTE: PROCEDURE NPAR1WAY used (Total process time):
    real time 0.10 seconds
    cpu time 0.01 seconds
```

NOTE: There were 1428 observations read from the data set WORK.EDICBASE.
NOTE: The data set WORK.EDICBASE has 1428 observations and 46 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time 0.00 seconds
33 proc means maxdec=1 n mean std; var hbam999; class in_edic; by
group; run;
NOTE: There were 1428 observations read from the data set WORK.EDICBASE.
NOTE: The PROCEDURE MEANS printed page 5.
NOTE: PROCEDURE MEANS used (Total process time):
real time 0.10 seconds
cpu time $\quad 0.00$ seconds
34 proc npar1way wilcoxon; var hbam999; class in_edic; by group;
run;
NOTE: There were 1428 observations read from the data set WORK.EDICBASE.
NOTE: The PROCEDURE NPAR1WAY printed pages 6-7.
NOTE: PROCEDURE NPAR1WAY used (Total process time):
real time 0.14 seconds
cpu time 0.03 seconds
35
proc freq; tables (sex group mab1 mac1)*in_edic/chisq exact; run;
NOTE: There were 1428 observations read from the data set WORK.EDICBASE.
NOTE: The PROCEDURE FREQ printed pages 8-13.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.32 seconds
cpu time 0.07 seconds
36
37 ods rtf close; run;
38
39
40
41 * Risk factors during 1st 2 yrs of EDIC *;

43 * just EDIC participants *;
44 DATA EDICBASE_A; set edicbase;
45 if in_edic=1;
46 if smoking=3 then currsmok=1; else if smoking in $(1,2)$ then
currsmok=0;
47
48 if age=. and yrs_iddm=. and bmi=. and hbalc=. and tchol=. and
triglyc=. and hdl=. and
49 ldl=. and aer=. and qol=. and whr=. and std_ins=.
50 and over_wt=. and low_hdl=. and high_ldl=. and ht=. and
smoking=. and currsmok=. and

```
51 exercise=. and obdrink1=. then NODATA=1; /* 2females and 1male
were missing all data,
51 ! except
52 IMT in one subject, take them out to match gender breakdowns in
published Table 4;
52 ! */run;
NOTE: There were 1428 observations read from the data set WORK.EDICBASE.
NOTE: The data set WORK.EDICBASE_A has 1375 observations and 48 variables.
NOTE: DATA statement used (Total process time):
        real time 0.38 seconds
        cpu time 0.03 seconds
53
54 ods rtf file="C:\DATA\NIDDK\EDICbase\DSIC\EDICBASE_T4.rtf"
style=sasdocprinter;
NOTE: Writing RTF Body file: C:\DATA\NIDDK\EDICbase\DSIC\EDICBASE_T4.rtf
55
5 6 ~ t i t l e ~ E D I C ~ B s l n ~ P a p e r ~ - ~ R e p l i c a t e ~ T a b l e ~ 4 ;
57 proc freq; tables sex; WHERE NODATA^=1; run;
NOTE: There were 1372 observations read from the data set WORK.EDICBASE_A.
    WHERE NODATA not = 1;
NOTE: The PROCEDURE FREQ printed page 14.
NOTE: PROCEDURE FREQ used (Total process time):
    real time 0.06 seconds
    cpu time 0.01 seconds
58 proc means n mean std maxdec=1; class sex; WHERE NODATA^=1;
59 var age yrs_iddm bmi hbalc tchol triglyc hdl ldl aer qol; run;
NOTE: There were 1372 observations read from the data set WORK.EDICBASE_A.
    WHERE NODATA not = 1;
NOTE: The PROCEDURE MEANS printed pages 15-16.
NOTE: PROCEDURE MEANS used (Total process time):
        real time 0.12 seconds
        cpu time 0.03 seconds
60 proc means n mean std maxdec=2; class sex; WHERE NODATA^=1;
61 var whr std_ins; run;
NOTE: There were 1372 observations read from the data set WORK.EDICBASE_A.
    WHERE NODATA not = 1;
NOTE: The PROCEDURE MEANS printed page 17.
NOTE: PROCEDURE MEANS used (Total process time):
        real time 0.12 seconds
        cpu time 0.01 seconds
62 proc nparlway wilcoxon; class sex; WHERE NODATA^=1;
63 var age yrs_iddm bmi whr std_ins hbalc tchol triglyc hdl ldl aer
qol; run;
NOTE: There were 1372 observations read from the data set WORK.EDICBASE_A.
```

```
    WHERE NODATA not = 1;
NOTE: The PROCEDURE NPAR1WAY printed pages 18-29.
NOTE: PROCEDURE NPAR1WAY used (Total process time):
real time 0.17 seconds
cpu time 0.07 seconds
6 4 ~ p r o c ~ f r e q ; ~ t a b l e s ~ ( o v e r \_ w t ~ l o w \_ h d l ~ h i g h \_ l d l ~ h t ~ s m o k i n g ~ c u r r s m o k
exercise obdrinkl)*sex/
65 chisq exact; WHERE NODATA^^=1;
66 run;
NOTE: There were 1372 observations read from the data set WORK.EDICBASE_A.
    WHERE NODATA not = 1;
NOTE: The PROCEDURE FREQ printed pages 30-39.
NOTE: PROCEDURE FREQ used (Total process time):
    real time 0.40 seconds
    cpu time 0.14 seconds
6 7
68 ods rtf close; run;
6 9
7 0
7 1
7 2
7 3
7 4
75
76
7 7
78 ods rtf file="C:\DATA\NIDDK\EDICbase\DSIC\EDICBASE_T5.rtf"
style=sasdocprinter;
NOTE: Writing RTF Body file: C:\DATA\NIDDK\EDICbase\DSIC\EDICBASE_T5.rtf
7 9
80 title EDIC Bsln Paper - Replicate Table 5;
NOTE: There were 1375 observations read from the data set WORK.EDICBASE_A.
NOTE: The data set WORK.EDICBASE_A has 1375 observations and 49 variables.
NOTE: DATA statement used (Total process time):
        real time 0.67 seconds
    cpu time 0.17 seconds
81 proc means n mean std maxdec=2 data=edicbase_a; where decade not
in ('','50 plus');
82 class sex decade; var ldp_mean rdp_mean; run;
NOTE: There were 1355 observations read from the data set WORK.EDICBASE_A.
    WHERE decade not in (' ', '50 plus');
NOTE: The PROCEDURE MEANS printed page 40.
NOTE: PROCEDURE MEANS used (Total process time):
    real time 0.14 seconds
    cpu time 0.03 seconds
83 proc freq; where decade not in ('','50 plus');
```

```
NOTE: There were 1355 observations read from the data set WORK.EDICBASE_A.
    WHERE decade not in (' ', '50 plus');
NOTE: The PROCEDURE FREQ printed pages 41-43.
NOTE: PROCEDURE FREQ used (Total process time):
    real time 0.18 seconds
    cpu time 0.01 seconds
85 proc sort data=edicbase_a; by decade;
NOTE: There were 1375 observations read from the data set WORK.EDICBASE_A.
NOTE: The data set WORK.EDICBASE_A has 1375 observations and 49 variables.
NOTE: PROCEDURE SORT used (Total process time):
    real time 0.01 seconds
    cpu time 0.00 seconds
86 proc freq; where decade not in ('','50 plus');
87 by decade; tables sex*low_aar/chisq exact; run;
NOTE: There were 1355 observations read from the data set WORK.EDICBASE_A.
        WHERE decade not in (' ', '50 plus');
NOTE: The PROCEDURE FREQ printed pages 44-49.
NOTE: PROCEDURE FREQ used (Total process time):
        real time 0.17 seconds
        cpu time 0.03 seconds
```

88
89 * run IMT analysis on entire dataset to get published n's (DCC:
IMT was a separate
89 ! study) *;
90 proc means n mean std maxdec=3 DATA=EDICBASE; class sex dec_imt;
var common internal;
90 ! run;
NOTE: There were 1428 observations read from the data set WORK.EDICBASE.
NOTE: The PROCEDURE MEANS printed pages 50-51.
NOTE: PROCEDURE MEANS used (Total process time):
real time 0.10 seconds
cpu time 0.03 seconds
91
92 ods rtf close; run;
93
94
95
96
97
98 ods rtf file="C:\DATA\NIDDK\EDICbase\DSIC\EDICBASE_T6.rtf"
style=sasdocprinter;
NOTE: Writing RTF Body file: C:\DATA \NIDDK\EDICbase\DSIC\EDICBASE_T6.rtf
99
100 title EDIC Bsln Paper - Replicate Table 6;
proc freq data=edicbase_a; tables group; run;
NOTE: There were 1375 observations read from the data set WORK.EDICBASE_A.
NOTE: The PROCEDURE FREQ printed page 52.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.12 seconds
cpu time 0.01 seconds
103 proc freq data=edicbase_a; tables (obinsreg hum_ins
sbgm_4)*group/chisq exact; run;
NOTE: There were 1375 observations read from the data set WORK.EDICBASE_A.
NOTE: The PROCEDURE FREQ printed pages 53-58.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.21 seconds
cpu time $\quad 0.07$ seconds
104 proc means n mean std maxdec=2; var std_ins; class group; run;
NOTE: There were 1375 observations read from the data set WORK.EDICBASE_A.
NOTE: The PROCEDURE MEANS printed page 59.
NOTE: PROCEDURE MEANS used (Total process time):
real time 0.12 seconds
cpu time 0.01 seconds
105 proc npar1way wilcoxon; var std_ins; class group; run;
NOTE: There were 1375 observations read from the data set WORK.EDICBASE_A.
NOTE: The PROCEDURE NPAR1WAY printed page 60.
NOTE: PROCEDURE NPAR1WAY used (Total process time):
real time 0.07 seconds
cpu time 0.01 seconds
106
107
108
109
110
111
112 title2 mean rates per year;
NOTE: Missing values were generated as a result of performing an operation on
missing values.
Each place is given by: (Number of times) at (Line): (Column).
7 at 108:17 7 at 109:17 7 at 110:18
NOTE: There were 1375 observations read from the data set WORK.EDICBASE_A.
NOTE: The data set WORK.EDICBASE_A has 1375 observations and 52 variables.
NOTE: DATA statement used (Total process time):
real time 0.37 seconds
cpu time 0.01 seconds

```
113 proc means mean maxdec=2; class group; var pt_cs__b pt_ra_b
pt_dka_b; run;
NOTE: There were 1375 observations read from the data set WORK.EDICBASE_A.
NOTE: The PROCEDURE MEANS printed page 61.
NOTE: PROCEDURE MEANS used (Total process time):
        real time 0.13 seconds
        cpu time 0.03 seconds
1 1 4 ~ p r o c ~ n p a r l w a y ~ w i l c o x o n ; ~ c l a s s ~ g r o u p ; ~ v a r ~ p t \_ c s \_ b ~ p t \_ r a \_ b ~
pt_dka__b; run;
NOTE: There were 1375 observations read from the data set WORK.EDICBASE_A.
NOTE: The PROCEDURE NPAR1WAY printed pages 62-64.
NOTE: PROCEDURE NPAR1WAY used (Total process time):
        real time 0.09 seconds
        cpu time 0.01 seconds
```

```
115 title;
```

115 title;
116 proc freq data=edicbase_a; tables sex*ow*group/all; run;
116 proc freq data=edicbase_a; tables sex*ow*group/all; run;
NOTE: There were }1375\mathrm{ observations read from the data set WORK.EDICBASE_A.
NOTE: There were }1375\mathrm{ observations read from the data set WORK.EDICBASE_A.
NOTE: The PROCEDURE FREQ printed pages 65-71.
NOTE: The PROCEDURE FREQ printed pages 65-71.
NOTE: PROCEDURE FREQ used (Total process time):
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.28 seconds
real time 0.28 seconds
cpu time 0.03 seconds
cpu time 0.03 seconds
117
118 ods rtf close; run;
119
NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414
NOTE: The SAS System used:
real time 13.70 seconds
cpu time 2.17 seconds

```

\section*{APPENDIX C}

\section*{SAS 9.1 Output for programming code submitted for the replication of results in Tables 3-6 of EDIC Baseline Paper}

\section*{EDIC BsIn Paper - Replicate Table 3}

\section*{The FREQ Procedure}

\section*{EDIC participant}
\begin{tabular}{rrrrr} 
IN_EDIC & Frequency & Percent & \begin{tabular}{r} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{r} 
Cumulative \\
Percent
\end{tabular} \\
\hline 0: No & 53 & 3.71 & 53 & 3.71 \\
1: Yes & 1375 & 96.29 & 1428 & 100.00
\end{tabular}

\section*{EDIC BsIn Paper - Replicate Table 3}

The MEANS Procedure
\begin{tabular}{lrllrrr}
\hline \begin{tabular}{l} 
EDIC \\
participant
\end{tabular} & \begin{tabular}{r} 
N \\
Obs
\end{tabular} & Variable & Label & N & Mean & Std Dev \\
\hline \(0:\) No & 53 & EXIT_AGE & Age (years) at DCCT Close-Out (Table 3) & 51 & 31.0 & 7.7 \\
& & EXIT_DUR & Duration of IDDM (years) at DCCT Close-Out & 51 & 11.6 & 4.4 \\
\(1:\) Yes & 1375 & EXIT_AGE & Age (years) at DCCT Close-Out (Table 3) & 1372 & 33.6 & 7.0 \\
& & EXIT_DUR & Duration of IDDM (years) at DCCT Close-Out & 1372 & 12.2 & 4.8 \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 3
}

The NPAR1WAY Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable EXIT_AGE Classified by Variable IN_EDIC} \\
\hline IN_EDIC & N & Sum of Scores & \begin{tabular}{l}
Expected \\
Under H0
\end{tabular} & \begin{tabular}{l}
Std Dev \\
Under H 0
\end{tabular} & Mean Score \\
\hline 1: Yes & 1372 & 983836.50 & 976864.0 & 2879.12406 & 717.081997 \\
\hline 0: No & 51 & 29339.50 & 36312.0 & 2879.12406 & 575.284314 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{lr}
\hline \multicolumn{1}{c}{ Wilcoxon Two-Sample Test } \\
\hline Statistic & 29339.5000 \\
& \\
Normal Approximation & \\
Z & -2.4216 \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.0077 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.0155 \\
& \\
t Approximation & \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.0078 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.0156 \\
\hline Z includes a continuity correction of \\
\multicolumn{2}{|c}{\(\mathbf{0 . 5 .}\)}
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 5.8648 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.0154 \\
\hline
\end{tabular}

The NPAR1WAY Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable EXIT_DUR Classified by Variable IN_EDIC} \\
\hline IN_EDIC & N & Sum of Scores & \begin{tabular}{l}
Expected \\
Under H0
\end{tabular} & Std Dev Under H0 & Mean Score \\
\hline 1: Yes & 1372 & 979027.0 & 976864.0 & 2881.48724 & 713.576531 \\
\hline 0: No & 51 & 34149.0 & 36312.0 & 2881.48724 & 669.588235 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Wilcoxon Two-Sample Test } \\
\hline Statistic & 34149.0000 \\
& \\
Normal Approximation & \\
\(\mathbf{Z}\) & -0.7505 \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.2265 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.4530 \\
& \\
t Approximation & \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.2265 \\
Two-Sided Pr > |Z| & 0.4531 \\
\hline \(\mathbf{Z}\) includes a continuity correction of \\
\multicolumn{2}{l}{\(\mathbf{0 . 5}\)}
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 0.5635 \\
DF & 1 \\
Pr > Chi-Square & 0.4529 \\
\hline
\end{tabular}

\section*{EDIC BsIn Paper - Replicate Table 3}

The MEANS Procedure

TREATMENT GROUP=EXPERIMENTAL: Intensive Treatment
\begin{tabular}{lrrrr}
\multicolumn{4}{c}{\begin{tabular}{l} 
Analysis Variable : HBAM999 DCCT \\
close-out HBA1c (Table3)
\end{tabular}} \\
\begin{tabular}{lrrrr} 
EDIC & N \\
participant & Obs & N & Mean & Std Dev \\
\hline 0: No & 16 & 12 & 8.5 & 1.6 \\
1: Yes & 687 & 685 & 7.4 & 1.1 \\
\hline
\end{tabular}
\end{tabular}

TREATMENT GROUP=STANDARD: Conventional Treatment
\begin{tabular}{lrrrr}
\multicolumn{4}{l}{\begin{tabular}{l} 
Analysis Variable : HBAM999 DCCT \\
close-out HBA1c (Table3)
\end{tabular}} \\
\begin{tabular}{lrrrr} 
EDIC \\
participant & Obs
\end{tabular} & \(\mathbf{N}\) & Mean & Std Dev \\
\hline 0: No & 37 & 35 & 9.6 & 1.4 \\
1: Yes & 688 & 687 & 9.1 & 1.5 \\
\hline
\end{tabular}

The NPAR1WAY Procedure

TREATMENT GROUP=EXPERIMENTAL: Intensive Treatment
\begin{tabular}{lrrrrrrr}
\hline \multicolumn{6}{c}{ Wilcoxon Scores (Rank Sums) for Variable HBAM999 } \\
Classified by Variable IN_EDIC
\end{tabular}

Average scores were used for ties.

Wilcoxon Two-Sample Test
Statistic 6233.5000

Normal Approximation
\(\mathbf{Z} \quad 2.9594\)

One-Sided \(\operatorname{Pr}>\mathbf{Z}\)
0.0015

Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\)
0.0031
t Approximation
\begin{tabular}{ll} 
One-Sided Pr \(>\mathbf{Z}\) & 0.0016 \\
Two-Sided Pr \(>|\mathbf{Z}|\) & 0.0032 \\
\hline
\end{tabular}

Z includes a continuity correction of \(\mathbf{0 . 5}\).
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 8.7621 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.0031 \\
\hline
\end{tabular}

\section*{EDIC BsIn Paper - Replicate Table 3}

The NPAR1WAY Procedure

TREATMENT GROUP=STANDARD: Conventional Treatment
\begin{tabular}{lrrrrrrr}
\hline \multicolumn{6}{c}{\begin{tabular}{l} 
Wilcoxon Scores (Rank Sums) for Variable HBAM999 \\
Classified by Variable IN_EDIC
\end{tabular}} \\
& & Sum of & Expected & Std Dev & Mean \\
& N & Scores & Under H0 & Under H0 & Score \\
IN_EDIC & 687 & 246439.0 & 248350.50 & 1203.33963 & 358.717613 \\
\hline 1: Yes & 35 & 14564.0 & 12652.50 & 1203.33963 & 416.114286 \\
0: No & & & & & &
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 14564.0000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 1.5881 \\
\hline One-Sided Pr > Z & 0.0561 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.1123 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & 0.0564 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.1127 \\
\hline \multicolumn{2}{|l|}{\(Z\) includes a continuity correction of 0.5 .} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 2.5233 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.1122 \\
\hline
\end{tabular}

\section*{EDIC BsIn Paper - Replicate Table 3}

\section*{The FREQ Procedure}

Table of SEX by IN_EDIC
\begin{tabular}{lrrr}
\begin{tabular}{l} 
SEX(Gender \\
(coded M or \\
F)
\end{tabular} & \multicolumn{2}{c}{\begin{tabular}{c} 
IN_EDIC(EDIC \\
participant)
\end{tabular}} & \\
\begin{tabular}{l} 
Frequency \\
Percent
\end{tabular} & & & \\
Row Pct & & & \\
Col Pct & 0: No & 1: Yes & Total \\
\hline \multicolumn{1}{c}{ F: Female } & 24 & 655 & 679 \\
& 1.68 & 45.87 & 47.55 \\
& 3.53 & 96.47 & \\
& 45.28 & 47.64 & \\
\multicolumn{1}{c}{ M: Male } & 29 & 720 & 749 \\
& 2.03 & 50.42 & 52.45 \\
& 3.87 & 96.13 & \\
& 54.72 & 52.36 & \\
Total & 53 & 1375 & 1428 \\
& 3.71 & 96.29 & 100.00 \\
\hline
\end{tabular}

Statistics for Table of SEX by IN_EDIC
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.1133 & 0.7364 \\
Likelihood Ratio Chi-Square & 1 & 0.1135 & 0.7362 \\
Continuity Adj. Chi-Square & 1 & 0.0386 & 0.8442 \\
Mantel-Haenszel Chi-Square & 1 & 0.1132 & 0.7365 \\
Phi Coefficient & & -0.0089 & \\
Contingency Coefficient & & 0.0089 & \\
Cramer's V & -0.0089 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 24 \\
Left-sided \(\operatorname{Pr}<=\mathbf{F}\) & 0.4230 \\
Right-sided Pr >= F & 0.6825 \\
& \\
Table Probability (P) & 0.1055 \\
Two-sided \(\operatorname{Pr}<=\mathbf{P}\) & 0.7804 \\
\hline
\end{tabular}

The FREQ Procedure
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Table of GROUP by IN_EDIC} \\
\hline GROUP(TREATMENT GROUP) & \multicolumn{3}{|l|}{\[
\underset{\text { participant) }}{\text { IN_EDIC(EDIC }}
\]} \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & 0: No & 1: Yes & Total \\
\hline EXPERIMENTAL: Intensive Treatment & \[
\begin{array}{r}
16 \\
1.12 \\
2.28 \\
30.19
\end{array}
\] & \[
\begin{array}{r}
687 \\
48.11 \\
97.72 \\
49.96
\end{array}
\] & 703
49.23 \\
\hline STANDARD: Conventional Treatment & \[
\begin{array}{r}
37 \\
2.59 \\
5.10 \\
69.81
\end{array}
\] & \[
\begin{array}{r}
688 \\
48.18 \\
94.90 \\
50.04
\end{array}
\] & 725
50.77 \\
\hline Total & \[
\begin{array}{r}
53 \\
3.71
\end{array}
\] & \[
\begin{array}{r}
1375 \\
96.29
\end{array}
\] & \[
\begin{array}{r}
1428 \\
100.00
\end{array}
\] \\
\hline
\end{tabular}

\section*{Statistics for Table of GROUP by IN_EDIC}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 7.9844 & 0.0047 \\
Likelihood Ratio Chi-Square & 1 & 8.2152 & 0.0042 \\
Continuity Adj. Chi-Square & 1 & 7.2129 & 0.0072 \\
Mantel-Haenszel Chi-Square & 1 & 7.9789 & 0.0047 \\
Phi Coefficient & & -0.0748 & \\
Contingency Coefficient & & 0.0746 & \\
Cramer's V & -0.0748 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 16 \\
Left-sided Pr <= F & 0.0033 \\
Right-sided Pr >= F & 0.9987 \\
& \\
Table Probability (P) & 0.0020 \\
Two-sided Pr <= P & 0.0049
\end{tabular}

The FREQ Procedure
Statistics for Table of GROUP by IN_EDIC
Sample Size \(=1428\)

\section*{Table of MAB1 by IN_EDIC}
\begin{tabular}{lrrr}
\begin{tabular}{l} 
MAB1(Was \\
patient \\
debriefed?)
\end{tabular} & \begin{tabular}{c} 
IN_EDIC(EDIC \\
participant)
\end{tabular} & \\
\begin{tabular}{l} 
Frequency \\
Percent
\end{tabular} & & & \\
Row Pct & & & \\
Col Pct & 0: No & 1: Yes & Total \\
\hline \multicolumn{1}{c}{ 1: No } & 13 & 19 & 32 \\
& 0.92 & 1.34 & 2.26 \\
& 40.63 & 59.38 & \\
& 26.00 & 1.39 & \\
& \(3:\) Yes & 37 & 1346 \\
& 2.61 & 95.12 & 97.74 \\
& 2.68 & 97.32 & \\
& 74.00 & 98.61 & \\
& 50 & 1365 & 1415 \\
Total & 3.53 & 96.47 & 100.00
\end{tabular}

Frequency Missing \(=13\)

Statistics for Table of MAB1 by IN_EDIC
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 132.1422 & \(<.0001\) \\
Likelihood Ratio Chi-Square & 1 & 48.3065 & \(<.0001\) \\
Continuity Adj. Chi-Square & 1 & 121.2436 & \(<.0001\) \\
Mantel-Haenszel Chi-Square & 1 & 132.0488 & \(<.0001\) \\
Phi Coefficient & & 0.3056 & \\
Contingency Coefficient & & 0.2923 & \\
Cramer's V & & 0.3056 & \\
\hline
\end{tabular}

WARNING: 25\% of the cells have expected counts less
than 5 . Chi-Square may not be a valid test.

The FREQ Procedure
Statistics for Table of MAB1 by IN_EDIC
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 13 \\
Left-sided Pr <= F & 1.0000 \\
Right-sided Pr >= F & \(5.541 \mathrm{E}-12\) \\
& \\
Table Probability (P) & \(5.335 \mathrm{E}-12\) \\
Two-sided Pr <= P & \(5.541 \mathrm{E}-12\)
\end{tabular}

\section*{Effective Sample Size = 1415} Frequency Missing = 13
\begin{tabular}{lrrr}
\hline \multicolumn{4}{c}{ Table of MAC1 by IN_EDIC } \\
\begin{tabular}{l} 
MAC1(Future \\
diabetes care)
\end{tabular} & \begin{tabular}{c} 
IN_EDIC(EDIC \\
participant)
\end{tabular} & \\
\begin{tabular}{l} 
Frequency \\
Percent
\end{tabular} & & & \\
Row Pct & & & \\
Col Pct & 0: No & 1: Yes & Total \\
\hline \multicolumn{1}{c}{ DCCT staff } & 10 & 676 & 686 \\
& 0.74 & 49.74 & 50.48 \\
& 1.46 & 98.54 & \\
& 20.83 & 51.56 & \\
Non-DCCT staff & 38 & 635 & 673 \\
& 2.80 & 46.73 & 49.52 \\
& 5.65 & 94.35 & \\
& 79.17 & 48.44 & \\
Total & 48 & 1311 & 1359 \\
& 3.53 & 96.47 & 100.00
\end{tabular}

Frequency Missing \(=69\)

Statistics for Table of MAC1 by IN_EDIC
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 17.4928 & \(<.0001\) \\
Likelihood Ratio Chi-Square & 1 & 18.5732 & \(<.0001\) \\
Continuity Adj. Chi-Square & 1 & 16.2851 & \(<.0001\) \\
Mantel-Haenszel Chi-Square & 1 & 17.4799 & \(<.0001\)
\end{tabular}

\section*{EDIC BsIn Paper - Replicate Table 3}

The FREQ Procedure

\section*{Statistics for Table of MAC1 by IN_EDIC}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Phi Coefficient & -0.1135 & \\
Contingency Coefficient & 0.1127 & \\
Cramer's V & -0.1135 & \\
\hline
\end{tabular}

Fisher's Exact Test
Cell (1,1) Frequency (F) 10
Left-sided \(\operatorname{Pr}<=\mathbf{F} \quad 1.727 \mathrm{E}-05\)
Right-sided \(\operatorname{Pr}>=\mathbf{F} \quad 1.0000\)

Table Probability (P) \(\quad 1.327 \mathrm{E}-05\)
Two-sided \(\operatorname{Pr}<=\mathbf{P} \quad\) 2.460E-05

Effective Sample Size \(=1359\)
Frequency Missing = 69

\title{
EDIC BsIn Paper - Replicate Table 4
}

The FREQ Procedure
\begin{tabular}{lrrrr}
\hline & \multicolumn{3}{c}{ Gender (coded M or F) } & \\
SEX & Frequency & Percent & \begin{tabular}{r} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{r} 
Cumulative \\
Percent
\end{tabular} \\
\hline F: Female & 653 & 47.59 & 653 & 47.59 \\
M: Male & 719 & 52.41 & 1372 & 100.00 \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 4
}

The MEANS Procedure
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Gender \\
(coded \\
Mor F)
\end{tabular} & \[
\begin{array}{r}
\mathbf{N} \\
\text { Obs }
\end{array}
\] & Variable & Label & N & Mean & Std Dev \\
\hline \multirow[t]{10}{*}{F: Female} & \multirow[t]{10}{*}{653} & AGE & Age at Edic Year 2 (Table 4) & 652 & 35.4 & 7.2 \\
\hline & & YRS_IDDM & Current duration of IDDM (years) & 650 & 14.8 & 5.0 \\
\hline & & BMI & Body mass index (kg/m**2) & 650 & 26.0 & 4.2 \\
\hline & & HBA1C & Last Non-Missing HbA1c During EDIC Year 1\&2 (Tb4) & 648 & 8.3 & 1.5 \\
\hline & & TCHOL & Serum total cholesterol (mg/dl) & 631 & 188.1 & 37.0 \\
\hline & & TRIGLYC & Serum triglycerides (mg/dl) & 631 & 83.1 & 73.3 \\
\hline & & HDL & Serum HDL cholesterol ( \(\mathrm{mg} / \mathrm{dl}\) ) & 631 & 59.2 & 14.0 \\
\hline & & LDL & Serum LDL cholesterol (mg/dl) & 627 & 112.1 & 30.3 \\
\hline & & AER & Albumin excretion rate (mg/day) & 627 & 41.8 & 226.9 \\
\hline & & QOL & quality of life & 640 & 75.3 & 8.6 \\
\hline \multirow[t]{10}{*}{M: Male} & \multirow[t]{10}{*}{719} & AGE & Age at Edic Year 2 (Table 4) & 718 & 36.4 & 6.6 \\
\hline & & YRS_IDDM & Current duration of IDDM (years) & 717 & 14.3 & 4.8 \\
\hline & & BMI & Body mass index (kg/m**2) & 716 & 26.6 & 3.9 \\
\hline & & HBA1C & Last Non-Missing HbA1c During EDIC Year 1\&2 (Tb4) & 715 & 8.2 & 1.3 \\
\hline & & TCHOL & Serum total cholesterol (mg/dl) & 696 & 185.1 & 35.6 \\
\hline & & TRIGLYC & Serum triglycerides (mg/dl) & 696 & 96.8 & 75.8 \\
\hline & & HDL & Serum HDL cholesterol (mg/dl) & 696 & 49.5 & 12.0 \\
\hline & & LDL & Serum LDL cholesterol (mg/dl) & 690 & 116.4 & 30.8 \\
\hline & & AER & Albumin excretion rate (mg/day) & 694 & 38.1 & 118.4 \\
\hline & & QOL & quality of life & 704 & 76.4 & 9.4 \\
\hline
\end{tabular}

\section*{EDIC BsIn Paper - Replicate Table 4}

The MEANS Procedure
\begin{tabular}{lrlllrrr}
\hline \begin{tabular}{l} 
Gender \\
(coded
\end{tabular} & N & & & & & \\
\begin{tabular}{l} 
M or F)
\end{tabular} & Obs & Variable & Label & N & Mean & Std Dev \\
\hline F: Female & 653 & WHR & Waist-to-hip ratio (natural waist) & 648 & 0.77 & 0.07 \\
& & STD_INS & Insulin dose (units/kg/day) & 651 & 0.70 & 0.24 \\
M: Male & 719 & WHR & Waist-to-hip ratio (natural waist) & 716 & 0.88 & 0.06 \\
& & STD_INS & Insulin dose (units/kg/day) & 718 & 0.72 & 0.25 \\
\hline
\end{tabular}

\section*{EDIC BsIn Paper - Replicate Table 4}

The NPAR1WAY Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable AGE Classified by Variable SEX} \\
\hline SEX & N & Sum of Scores & \begin{tabular}{l}
Expected \\
Under \(\mathbf{H 0}\)
\end{tabular} & Std Dev Under H0 & Mean Score \\
\hline F: Female & 652 & 427074.50 & 446946.0 & 7313.31141 & 655.022239 \\
\hline M: Male & 718 & 512060.50 & 492189.0 & 7313.31141 & 713.176184 \\
\hline \multicolumn{6}{|c|}{Average scores were used for ties.} \\
\hline
\end{tabular}

Wilcoxon Two-Sample Test
Statistic 427074.5000

\section*{Normal Approximation}
\begin{tabular}{lr} 
Z & -2.7171 \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.0033 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.0066 \\
& \\
t Approximation \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.0033 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.0067 \\
\hline \(\mathbf{Z}\) includes a continuity correction of \\
\multicolumn{2}{c}{\(\mathbf{0 . 5}\)}
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 7.3830 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.0066 \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 4
}

The NPAR1WAY Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable YRS_IDDM Classified by Variable SEX} \\
\hline SEX & N & Sum of Scores & \begin{tabular}{l}
Expected \\
Under H0
\end{tabular} & Std Dev Under H0 & Mean Score \\
\hline F: Female & 650 & 456469.50 & 444600.0 & 7288.86263 & 702.260769 \\
\hline M: Male & 717 & 478558.50 & 490428.0 & 7288.86263 & 667.445607 \\
\hline \multicolumn{6}{|c|}{Average scores were used for ties.} \\
\hline
\end{tabular}

Wilcoxon Two-Sample Test
Statistic 456469.5000

\section*{Normal Approximation}
\begin{tabular}{lr} 
Z & 1.6284 \\
One-Sided \(\operatorname{Pr}>\mathbf{Z}\) & 0.0517 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.1034 \\
& \\
t Approximation \\
One-Sided \(\operatorname{Pr}>\mathbf{Z}\) & 0.0518 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.1037 \\
\hline \(\mathbf{Z}\) includes a continuity correction of \\
\multicolumn{2}{c}{\(\mathbf{0 . 5}\)}
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 2.6518 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.1034 \\
\hline
\end{tabular}

\section*{EDIC BsIn Paper - Replicate Table 4}

The NPAR1WAY Procedure
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{ Wilcoxon Scores (Rank Sums) for Variable BMI } \\
Classified by Variable SEX
\end{tabular}

Wilcoxon Two-Sample Test
Statistic \(\quad 415002.5000\)

\section*{Normal Approximation}
\begin{tabular}{lr}
\(\mathbf{Z}\) & -4.0202 \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & \(<.0001\) \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & \(<.0001\)
\end{tabular}
t Approximation
\begin{tabular}{ll} 
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & \(<.0001\) \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & \(<.0001\)
\end{tabular}

Z includes a continuity correction of 0.5 .
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 16.1624 \\
DF & 1 \\
Pr \(>\) Chi-Square & \(<.0001\) \\
\hline
\end{tabular}

\section*{EDIC BsIn Paper - Replicate Table 4}

The NPAR1WAY Procedure
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{ Wilcoxon Scores (Rank Sums) for Variable WHR } \\
Classified by Variable SEX
\end{tabular}

Wilcoxon Two-Sample Test
Statistic 251234.5000

\section*{Normal Approximation}
Z -26.2948

One-Sided Pr < Z 0.0001
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}| \quad<.0001\)
t Approximation
\begin{tabular}{cr} 
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & \(<.0001\) \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & \(<.0001\) \\
\hline \(\mathbf{Z}\) includes a continuity correction of \\
\(\mathbf{0 . 5}\).
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 691.4221 \\
DF & 1 \\
Pr \(>\) Chi-Square & \(<.0001\) \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 4
}

The NPAR1WAY Procedure
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{ Wilcoxon Scores (Rank Sums) for Variable STD_INS } \\
Classified by Variable SEX
\end{tabular}

Wilcoxon Two-Sample Test
Statistic 437682.0000

\section*{Normal Approximation}
\begin{tabular}{lr} 
Z & -1.1297 \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.1293 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.2586 \\
& \\
t Approximation \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.1294 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.2588 \\
\hline \(\mathbf{Z}\) includes a continuity correction of \\
\multicolumn{2}{c}{\(\mathbf{0 . 5}\)}
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 1.2764 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.2586 \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 4
}

The NPAR1WAY Procedure
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{ Wilcoxon Scores (Rank Sums) for Variable HBA1C } \\
Classified by Variable SEX
\end{tabular}

Wilcoxon Two-Sample Test
Statistic 440919.5000

\section*{Normal Approximation}
\begin{tabular}{lr} 
Z & -0.1400 \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.4443 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.8886 \\
& \\
t Approximation \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.4443 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.8886 \\
\hline \(\mathbf{Z}\) includes a continuity correction of \\
\multicolumn{2}{c}{\(\mathbf{0 . 5}\)}
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 0.0196 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.8886 \\
\hline
\end{tabular}

\section*{EDIC BsIn Paper - Replicate Table 4}

The NPAR1WAY Procedure
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{ Wilcoxon Scores (Rank Sums) for Variable TCHOL } \\
Classified by Variable SEX
\end{tabular}

Wilcoxon Two-Sample Test
Statistic 428078.0000

\section*{Normal Approximation}
\begin{tabular}{lr} 
Z & 1.3044 \\
One-Sided \(\operatorname{Pr}>\mathbf{Z}\) & 0.0960 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.1921 \\
& \\
t Approximation & \\
One-Sided \(\operatorname{Pr}>\mathbf{Z}\) & 0.0962 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.1923 \\
\hline \multicolumn{2}{|c}{\(\mathbf{Z}\) includes a continuity correction of } \\
\multicolumn{2}{c}{\(\mathbf{0 . 5}\)}
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 1.7018 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.1921 \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 4
}

The NPAR1WAY Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable TRIGLYC Classified by Variable SEX} \\
\hline SEX & N & Sum of Scores & Expected Under H0 & Std Dev Under H 0 & Mean Score \\
\hline F: Female & 631 & 391693.0 & 418984.0 & 6971.12271 & 620.749604 \\
\hline M: Male & 696 & 489435.0 & 462144.0 & 6971.12271 & 703.211207 \\
\hline \multicolumn{6}{|c|}{Average scores were used for ties.} \\
\hline
\end{tabular}

Wilcoxon Two-Sample Test
Statistic 391693.0000

\section*{Normal Approximation}
\begin{tabular}{lr}
\(\mathbf{Z}\) & -3.9148 \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & \(<.0001\) \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & \(<.0001\)
\end{tabular}
t Approximation
\begin{tabular}{cr} 
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & \(<.0001\) \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & \(<.0001\) \\
\hline \(\mathbf{Z}\) includes a continuity correction of \\
\(\mathbf{0 . 5}\).
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 15.3262 \\
DF & 1 \\
Pr \(>\) Chi-Square & \(<.0001\) \\
\hline
\end{tabular}

\section*{EDIC BsIn Paper - Replicate Table 4}

The NPAR1WAY Procedure
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{ Wilcoxon Scores (Rank Sums) for Variable HDL } \\
Classified by Variable SEX \\
& & Sum of & Expected & Std Dev & \begin{tabular}{r} 
Mean \\
Score
\end{tabular} \\
SEX & N & Scores & Under H0 & Under H0 & Scor \\
\hline F: Female & 631 & 510644.0 & 418984.0 & 6969.37382 & 809.261490 \\
M: Male & 696 & 370484.0 & 462144.0 & 6969.37382 & 532.304598 \\
\hline \multicolumn{6}{c}{ Average scores were used for ties. } \\
\hline
\end{tabular}

Wilcoxon Two-Sample Test
Statistic \(\quad 510644.0000\)

\section*{Normal Approximation}
\(\mathbf{Z} \quad 13.1518\)

One-Sided Pr > Z <. 0001
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}| \quad<.0001\)
t Approximation
\begin{tabular}{cr} 
One-Sided Pr \(>\mathbf{Z}\) & \(<.0001\) \\
Two-Sided Pr \(>|\mathbf{Z}|\) & \(<.0001\) \\
\hline \(\mathbf{Z}\) includes a continuity correction of \\
\(\mathbf{0 . 5}\).
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 172.9706 \\
DF & 1 \\
Pr \(>\) Chi-Square & \(<.0001\) \\
\hline
\end{tabular}

\section*{EDIC BsIn Paper - Replicate Table 4}

The NPAR1WAY Procedure
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{ Wilcoxon Scores (Rank Sums) for Variable LDL } \\
Classified by Variable SEX \\
& & Sum of & Expected & Std Dev & \begin{tabular}{r} 
Mean \\
Ste
\end{tabular} \\
SEX & N & Scores & Under H0 & Under H0 & Score \\
\hline F: Female & 627 & 394996.0 & 413193.0 & 6892.85838 & 629.977671 \\
M: Male & 690 & 472907.0 & 454710.0 & 6892.85838 & 685.372464 \\
\hline \multicolumn{6}{c}{ Average scores were used for ties. } \\
\hline
\end{tabular}

Wilcoxon Two-Sample Test
Statistic 394996.0000

\section*{Normal Approximation}
\begin{tabular}{lr}
\(\mathbf{Z}\) & -2.6399 \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.0041 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.0083 \\
& \\
t Approximation \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.0042 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.0084 \\
\hline \(\mathbf{Z}\) includes a continuity correction of \\
\multicolumn{2}{c}{\(\mathbf{0 . 5}\)}
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 6.9695 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.0083 \\
\hline
\end{tabular}

\section*{EDIC BsIn Paper - Replicate Table 4}

The NPAR1WAY Procedure
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{ Wilcoxon Scores (Rank Sums) for Variable AER } \\
Classified by Variable SEX \\
& & Sum of & Expected & Std Dev & \begin{tabular}{r} 
Mean \\
SEX
\end{tabular} & N \\
Scores & Under H0 & Under H0 & Score \\
\hline F: Female & 627 & 405685.0 & 414447.0 & 6909.70218 & 647.025518 \\
M: Male & 694 & 467496.0 & 458734.0 & 6909.70218 & 673.625360 \\
\hline \multicolumn{6}{c}{ Average scores were used for ties. } \\
\hline
\end{tabular}

Wilcoxon Two-Sample Test
Statistic \(\quad 405685.0000\)

\section*{Normal Approximation}
\begin{tabular}{lr}
\(\mathbf{Z}\) & -1.2680 \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.1024 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.2048
\end{tabular}
t Approximation
\begin{tabular}{cr} 
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.1025 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.2050 \\
\hline \(\mathbf{Z}\) includes a continuity correction of \\
\(\mathbf{0 . 5}\).
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 1.6080 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.2048 \\
\hline
\end{tabular}

\section*{EDIC BsIn Paper - Replicate Table 4}

The NPAR1WAY Procedure
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{ Wilcoxon Scores (Rank Sums) for Variable QOL } \\
Classified by Variable SEX
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 413668.5000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & -2.3544 \\
\hline One-Sided Pr < Z & 0.0093 \\
\hline Two-Sided Pr > | \(\mathbf{Z} \mid\) & 0.0186 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr < Z & 0.0093 \\
\hline Two-Sided Pr > | \(\mathbf{Z} \mid\) & 0.0187 \\
\hline \multicolumn{2}{|l|}{\(Z\) includes a continuity correction of 0.5 .} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 5.5436 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.0185 \\
\hline
\end{tabular}

The FREQ Procedure

Table of OVER_WT by SEX
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { OVER_WT(Overweight } \\
\text { (BMI>=27.8 M, } 27.3 \\
\text { F)(Table4)) }
\end{gathered}
\] & \multicolumn{3}{|l|}{SEX(Gender ( \(\operatorname{coded}\) M or F))} \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & Female & \[
\begin{array}{r}
\text { M: } \\
\text { Male }
\end{array}
\] & Total \\
\hline 0: No & \[
\begin{array}{r}
443 \\
32.43 \\
47.23 \\
68.15
\end{array}
\] & \[
\begin{array}{r}
495 \\
36.24 \\
52.77 \\
69.13
\end{array}
\] & \[
\begin{array}{r}
938 \\
68.67
\end{array}
\] \\
\hline 1: Yes & \[
\begin{array}{r}
207 \\
15.15 \\
48.36 \\
31.85
\end{array}
\] & \[
\begin{array}{r}
221 \\
16.18 \\
51.64 \\
30.87
\end{array}
\] & \[
\begin{array}{r}
428 \\
31.33
\end{array}
\] \\
\hline Total & \[
\begin{array}{r}
650 \\
47.58
\end{array}
\] & \[
\begin{array}{r}
716 \\
52.42
\end{array}
\] & \[
\begin{array}{r}
1366 \\
100.00
\end{array}
\] \\
\hline
\end{tabular}

Frequency Missing = 6

\section*{Statistics for Table of OVER_WT by SEX}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.1522 & 0.6965 \\
Likelihood Ratio Chi-Square & 1 & 0.1521 & 0.6965 \\
Continuity Adj. Chi-Square & 1 & 0.1100 & 0.7401 \\
Mantel-Haenszel Chi-Square & 1 & 0.1520 & 0.6966 \\
Phi Coefficient & & -0.0106 & \\
Contingency Coefficient & & 0.0106 & \\
Cramer's V & -0.0106 & \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 4
}

The FREQ Procedure
Statistics for Table of OVER_WT by SEX
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 443 \\
Left-sided \(\operatorname{Pr}<=\mathbf{F}\) & 0.3700 \\
Right-sided Pr >= F & 0.6732 \\
& \\
Table Probability (P) & 0.0431 \\
Two-sided Pr <= P & 0.7261 \\
\hline
\end{tabular}
\[
\begin{aligned}
\text { Effective Sample Size } & =1366 \\
\text { Frequency Missing } & =6
\end{aligned}
\]

Table of LOW_HDL by SEX
LOW_HDL(HDL < 35 SEX(Gender \(\mathrm{mg} / \mathrm{dl}(0=\mathrm{no}, 1=\) yes \()) \quad(\) coded M or \(\mathbf{F}))\)

Frequency
Percent
\begin{tabular}{lrrrr}
\begin{tabular}{l} 
Row Pct \\
Col Pct
\end{tabular} & \begin{tabular}{r} 
F: \\
Female
\end{tabular} & \begin{tabular}{r} 
M: \\
Male
\end{tabular} & Total \\
\hline & 0: No & 621 & 639 & 1260 \\
& & 46.80 & 48.15 & 94.95 \\
& 49.29 & 50.71 & \\
& & 98.42 & 91.81 & \\
& 1: Yes & 10 & 57 & 67 \\
& & 0.75 & 4.30 & 5.05 \\
& & 14.93 & 85.07 & \\
Total & & 1.58 & 8.19 & \\
& & 631 & 696 & 1327 \\
& & 47.55 & 52.45 & 100.00
\end{tabular}

Frequency Missing \(=45\)

Statistics for Table of LOW_HDL by SEX
\begin{tabular}{lrrr} 
Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 30.1157 & \(<.0001\) \\
Likelihood Ratio Chi-Square & 1 & 33.4845 & \(<.0001\) \\
Continuity Adj. Chi-Square & 1 & 28.7537 & \(<.0001\) \\
Mantel-Haenszel Chi-Square & 1 & 30.0930 & \(<.0001\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{The FREQ Procedure} \\
\hline \multicolumn{4}{|l|}{Statistics for Table of LOW_HDL by SEX} \\
\hline Statistic & DF & Value & Prob \\
\hline Phi Coefficient & & 0.1506 & \\
\hline Contingency Coefficient & & 0.1490 & \\
\hline Cramer's V & & 0.1506 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 621 \\
Left-sided \(\operatorname{Pr}<=\mathbf{F}\) & 1.0000 \\
Right-sided \(\operatorname{Pr}>=\) F & \(9.004 \mathrm{E}-09\) \\
& \\
Table Probability (P) & \(7.447 \mathrm{E}-09\) \\
Two-sided \(\operatorname{Pr}<=\mathbf{P}\) & \(1.143 \mathrm{E}-08\) \\
\hline
\end{tabular}

Effective Sample Size = 1327
Frequency Missing \(=45\)

Table of HIGH_LDL by SEX


Frequency Missing \(=55\)

\section*{Statistics for Table of HIGH_LDL by SEX}

\title{
EDIC BsIn Paper - Replicate Table 4
}

The FREQ Procedure
Statistics for Table of HIGH_LDL by SEX
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 3.3931 & 0.0655 \\
Likelihood Ratio Chi-Square & 1 & 3.4012 & 0.0651 \\
Continuity Adj. Chi-Square & 1 & 3.1715 & 0.0749 \\
Mantel-Haenszel Chi-Square & 1 & 3.3905 & 0.0656 \\
Phi Coefficient & & 0.0508 & \\
Contingency Coefficient & & 0.0507 & \\
Cramer's V & & 0.0508 & \\
\hline
\end{tabular}

Fisher's Exact Test
Cell (1,1) Frequency (F) 464
Left-sided \(\operatorname{Pr}<=\mathbf{F} \quad 0.9716\)
Right-sided \(\mathbf{P r}>=\mathbf{F} \quad 0.0374\)

Table Probability (P) 0.0090
Two-sided \(\mathbf{P r}<=\mathbf{P} \quad 0.0668\)

\section*{Effective Sample Size = 1317}

Frequency Missing = 55

\section*{EDIC BsIn Paper - Replicate Table 4}

\section*{The FREQ Procedure}

Table of HT by SEX
HT(History
of hypertension SEX(Gender \((1=\) yes \()) \quad(\operatorname{coded} M\) or \(F))\)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & \[
\begin{array}{r}
\text { F: } \\
\text { Female }
\end{array}
\] & \[
\begin{gathered}
\text { M: } \\
\text { Male }
\end{gathered}
\] & Total \\
\hline \multirow[t]{4}{*}{0: No} & 535 & 528 & 1063 \\
\hline & 38.99 & 38.48 & 77.48 \\
\hline & 50.33 & 49.67 & \\
\hline & 81.93 & 73.44 & \\
\hline
\end{tabular}
\begin{tabular}{rrrrr} 
& 1: Yes & 118 & 191 & 309 \\
& & 8.60 & 13.92 & 22.52 \\
& & 38.19 & 61.81 & \\
& & 18.07 & 26.56 & \\
Total & & & & \\
& & 653 & 719 & 1372 \\
& & 47.59 & 52.41 & 100.00 \\
\hline
\end{tabular}

Statistics for Table of HT by SEX
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 14.1499 & 0.0002 \\
Likelihood Ratio Chi-Square & 1 & 14.2800 & 0.0002 \\
Continuity Adj. Chi-Square & 1 & 13.6673 & 0.0002 \\
Mantel-Haenszel Chi-Square & 1 & 14.1396 & 0.0002 \\
Phi Coefficient & & 0.1016 & \\
Contingency Coefficient & & 0.1010 & \\
Cramer's V & & 0.1016 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 535 \\
Left-sided Pr <= F & 0.9999 \\
Right-sided Pr >= F & \(1.027 \mathrm{E}-04\) \\
\\
Table Probability (P) & \(4.198 \mathrm{E}-05\) \\
Two-sided Pr <= P & \(1.723 \mathrm{E}-04\) \\
\hline
\end{tabular}

\title{
DIC BsIn Paper - Replicate Table 4 \\ The FREQ Procedure \\ Statistics for Table of HT by SEX \\ Sample Size = 1372
}

Table of SMOKING by SEX
\(\left.\begin{array}{lrrr}\quad \text { SMOKING(Smoking (1=never, 2=former, } \\ \text { 3=current) })\end{array} \quad \begin{array}{rrrr}\text { SEX(Gender } \\ \text { (coded M or F)) }\end{array}\right)\)

\section*{Statistics for Table of SMOKING by SEX}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 2 & 1.7124 & 0.4248 \\
Likelihood Ratio Chi-Square & 2 & 1.7154 & 0.4241 \\
Mantel-Haenszel Chi-Square & 1 & 1.1822 & 0.2769 \\
Phi Coefficient & & 0.0353 & \\
Contingency Coefficient & & 0.0353 & \\
Cramer's V & 0.0353 & \\
\hline
\end{tabular}

Fisher's Exact Test
Table Probability (P) 0.0021
\(\mathbf{P r}<=\mathbf{P} \quad 0.4243\)

\title{
EDIC BsIn Paper - Replicate Table 4
}

The FREQ Procedure

\section*{Statistics for Table of SMOKING by SEX}

Sample Size \(=1372\)

Table of currsmok by SEX
SEX(Gender
currsmok (coded M or F))
Frequency
Percent
\begin{tabular}{lrrrr}
\begin{tabular}{l} 
Row Pct \\
Col Pct
\end{tabular} & \begin{tabular}{r} 
F: \\
Female
\end{tabular} & \begin{tabular}{r} 
M: \\
Male
\end{tabular} & Total \\
\hline & \(\mathbf{0}\) & 523 & 556 & 1079 \\
& & 38.12 & 40.52 & 78.64 \\
& & 48.47 & 51.53 & \\
& & 80.09 & 77.33 & \\
& \(\mathbf{1}\) & 130 & 163 & 293 \\
& & 94.48 & 11.88 & 21.36 \\
& & 19.91 & 55.63 & \\
Total & & 653 & 719 & \\
& & 47.59 & 52.41 & 100.00 \\
\hline
\end{tabular}

Statistics for Table of currsmok by SEX
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 1.5547 & 0.2124 \\
Likelihood Ratio Chi-Square & 1 & 1.5579 & 0.2120 \\
Continuity Adj. Chi-Square & 1 & 1.3945 & 0.2376 \\
Mantel-Haenszel Chi-Square & 1 & 1.5535 & 0.2126 \\
Phi Coefficient & & 0.0337 & \\
Contingency Coefficient & & 0.0336 & \\
Cramer's V & 0.0337 & \\
\hline
\end{tabular}

The FREQ Procedure
Statistics for Table of currsmok by SEX
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 523 \\
Left-sided Pr <= F & 0.9055 \\
Right-sided Pr >= F & 0.1188 \\
& \\
Table Probability (P) & 0.0242 \\
Two-sided Pr <= P & 0.2351
\end{tabular}

Sample Size \(=1372\)

Table of EXERCISE by SEX
EXERCISE(Current SEX(Gender
exercise level) (coded M or F))
Frequency
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Percent \\
Row Pct \\
Col Pct
\end{tabular} & & Female & \[
\begin{array}{r}
\text { M: } \\
\text { Male }
\end{array}
\] & Total \\
\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{1: Very Hard}} & 19 & 74 & 93 \\
\hline & & 1.39 & 5.42 & 6.81 \\
\hline & & 20.43 & 79.57 & \\
\hline & & 2.92 & 10.35 & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{2: Hard}} & 22 & 42 & 64 \\
\hline & & 1.61 & 3.08 & 4.69 \\
\hline & & 34.38 & 65.63 & \\
\hline & & 3.38 & 5.87 & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{3: Moderate}} & 379 & 354 & 733 \\
\hline & & 27.77 & 25.93 & 53.70 \\
\hline & & 51.71 & 48.29 & \\
\hline & & 58.31 & 49.51 & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{4: Mild}} & 230 & 245 & 475 \\
\hline & & 16.85 & 17.95 & 34.80 \\
\hline & & 48.42 & 51.58 & \\
\hline & & 35.38 & 34.27 & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Total}} & 650 & 715 & 1365 \\
\hline & & 47.62 & 52.38 & 100.00 \\
\hline
\end{tabular}

Frequency Missing = 7
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{The FREQ Procedure} \\
\hline \multicolumn{4}{|l|}{Statistics for Table of EXERCISE by SEX} \\
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 3 & 37.0921 & <. 0001 \\
\hline Likelihood Ratio Chi-Square & 3 & 39.3383 & <. 0001 \\
\hline Mantel-Haenszel Chi-Square & 1 & 18.1121 & <. 0001 \\
\hline Phi Coefficient & & 0.1648 & \\
\hline Contingency Coefficient & & 0.1626 & \\
\hline Cramer's V & & 0.1648 & \\
\hline
\end{tabular}

Fisher's Exact Test
Table Probability (P) \(\quad 1.529 \mathrm{E}-12\)
\(\mathbf{P r}<=\mathbf{P} \quad 1.738 \mathrm{E}-08\)
Effective Sample Size \(=1365\)
Frequency Missing = 7

Table of OBDRINK1 by SEX
OBDRINK1(Drinks
1+ alcoholic
beverage/week SEX(Gender ( \(2=\mathrm{y}\) )) (coded M or F))
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & & F:
Female & \[
\begin{array}{r}
\text { M: } \\
\text { Male }
\end{array}
\] & Total \\
\hline & 1: No & 442 & 378 & 820 \\
\hline & & 32.29 & 27.61 & 59.90 \\
\hline & & 53.90 & 46.10 & \\
\hline & & 67.90 & 52.65 & \\
\hline & 2: Yes & 209 & 340 & 549 \\
\hline & & 15.27 & 24.84 & 40.10 \\
\hline & & 38.07 & 61.93 & \\
\hline & & 32.10 & 47.35 & \\
\hline \multirow[t]{2}{*}{Total} & & 651 & 718 & 1369 \\
\hline & & 47.55 & 52.45 & 100.00 \\
\hline
\end{tabular}

Frequency Missing \(=3\)

\section*{Statistics for Table of OBDRINK1 by SEX}

\title{
EDIC BsIn Paper - Replicate Table 4
}

The FREQ Procedure

\section*{Statistics for Table of OBDRINK1 by SEX}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 33.0539 & \(<.0001\) \\
Likelihood Ratio Chi-Square & 1 & 33.2821 & \(<.0001\) \\
Continuity Adj. Chi-Square & 1 & 32.4221 & \(<.0001\) \\
Mantel-Haenszel Chi-Square & 1 & 33.0298 & \(<.0001\) \\
Phi Coefficient & & 0.1554 & \\
Contingency Coefficient & & 0.1535 & \\
Cramer's V & 0.1554 & \\
\hline
\end{tabular}

Fisher's Exact Test
\begin{tabular}{lr}
\multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 442 \\
Left-sided Pr <= F & 1.0000 \\
Right-sided Pr >= F & \(5.558 \mathrm{E}-09\)
\end{tabular}

Table Probability (P) 2.689E-09
Two-sided \(\operatorname{Pr}<=\mathbf{P} \quad 8.922 \mathrm{E}-09\)

Effective Sample Size = 1369
Frequency Missing = 3

\section*{EDIC BsIn Paper - Replicate Table 5}

The MEANS Procedure
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Gender \\
(coded \\
Mor F)
\end{tabular} & \begin{tabular}{l}
Age \\
Decade \\
at \\
EDIC \\
Year 2 \\
(Table \\
5)
\end{tabular} & \[
\begin{array}{r}
\mathbf{N} \\
\text { Obs }
\end{array}
\] & Variable & Label & N & Mean & Std Dev \\
\hline \multirow[t]{6}{*}{F: Female} & \multirow[t]{2}{*}{20-29} & \multirow[t]{2}{*}{154} & LDP_MEAN & Left Ankle Arm ratio & 154 & 1.08 & 0.10 \\
\hline & & & RDP_MEAN & Right Ankle Arm ratio & 154 & 1.08 & 0.10 \\
\hline & \multirow[t]{2}{*}{30-39} & \multirow[t]{2}{*}{289} & LDP_MEAN & Left Ankle Arm ratio & 287 & 1.09 & 0.13 \\
\hline & & & RDP_MEAN & Right Ankle Arm ratio & 288 & 1.11 & 0.12 \\
\hline & \multirow[t]{2}{*}{40-49} & \multirow[t]{2}{*}{202} & LDP_MEAN & Left Ankle Arm ratio & 202 & 1.08 & 0.12 \\
\hline & & & RDP_MEAN & Right Ankle Arm ratio & 202 & 1.10 & 0.13 \\
\hline \multirow[t]{6}{*}{M: Male} & \multirow[t]{2}{*}{20-29} & \multirow[t]{2}{*}{117} & LDP_MEAN & Left Ankle Arm ratio & 116 & 1.08 & 0.10 \\
\hline & & & RDP_MEAN & Right Ankle Arm ratio & 116 & 1.07 & 0.12 \\
\hline & \multirow[t]{2}{*}{30-39} & \multirow[t]{2}{*}{351} & LDP_MEAN & Left Ankle Arm ratio & 351 & 1.10 & 0.13 \\
\hline & & & RDP_MEAN & Right Ankle Arm ratio & 351 & 1.12 & 0.13 \\
\hline & \multirow[t]{2}{*}{40-49} & \multirow[t]{2}{*}{242} & LDP_MEAN & Left Ankle Arm ratio & 241 & 1.11 & 0.14 \\
\hline & & & RDP_MEAN & Right Ankle Arm ratio & 241 & 1.13 & 0.13 \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 5
}

The FREQ Procedure

Table 1 of LOW_AAR by DECADE
Controlling for SEX=F: Female
DECADE(Age Decade at EDIC Year 2 (Table
LOW_AAR(Ankle/arm < 0.8) 5))

Frequency
Percent
Row Pct
\begin{tabular}{llrrrr} 
Col Pct & & \(\mathbf{2 0} \mathbf{- 2 9}\) & \(\mathbf{3 0} \mathbf{- 3 9}\) & \(\mathbf{4 0} \mathbf{- 4 9}\) & Total \\
\hline & \(\mathbf{0 :}\) No & 150 & 281 & 195 & 626 \\
& & 23.26 & 43.57 & 30.23 & 97.05 \\
& & 23.96 & 44.89 & 31.15 & \\
& & 97.40 & 97.23 & 96.53 & \\
& \(\mathbf{1 : ~ Y e s ~}\) & 4 & 8 & 7 & 19 \\
& & 0.62 & 1.24 & 1.09 & 2.95 \\
& & 21.05 & 42.11 & 36.84 & \\
& & 2.60 & 2.77 & 3.47 & \\
& & 154 & 289 & 202 & 645 \\
& & & 23.88 & 44.81 & 31.32 \\
& & & & & 100.00 \\
\hline
\end{tabular}

Table 2 of LOW_AAR by DECADE
Controlling for SEX=M: Male
DECADE(Age Decade at EDIC Year 2 (Table
LOW_AAR(Ankle/arm < 0.8) 5))

Frequency
Percent
Row Pct
\begin{tabular}{lrrrrr} 
Col Pct & & \(\mathbf{2 0 - 2 9}\) & \(\mathbf{3 0} \mathbf{- 3 9}\) & \(\mathbf{4 0} \mathbf{- 4 9}\) & Total \\
\hline & \(\mathbf{0 :} \mathbf{N o}\) & 114 & 347 & 231 & 692 \\
& & 16.08 & 48.94 & 32.58 & 97.60 \\
& & 16.47 & 50.14 & 33.38 & \\
& & 97.44 & 98.86 & 95.85 & \\
& \(\mathbf{1 : ~ Y e s ~}\) & 3 & 4 & 10 & 17 \\
& & 0.42 & 0.56 & 1.41 & 2.40 \\
& & 17.65 & 23.53 & 58.82 & \\
& & 2.56 & 1.14 & 4.15 & \\
& & 117 & 351 & 241 & 709 \\
& & 16.50 & 49.51 & 33.99 & 100.00
\end{tabular}

Frequency Missing = 1

The FREQ Procedure
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Table 1 of HIGH_AAR by DECADE} \\
\hline \multicolumn{5}{|c|}{Controlling for SEX=F: Female} \\
\hline HIGH_AAR(Ankle/arm > 1.4) & \multicolumn{3}{|l|}{DECADE(Age Decade at EDIC Year 2 (Table 5))} & \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pet
\end{tabular} & 20-29 & 30-39 & 40-49 & Total \\
\hline 0: No & 154 & 272 & 199 & 625 \\
\hline & 23.88 & 42.17 & 30.85 & 96.90 \\
\hline & 24.64 & 43.52 & 31.84 & \\
\hline & 100.00 & 94.12 & 98.51 & \\
\hline 1: Yes & 0 & 17 & 3 & 20 \\
\hline & 0.00 & 2.64 & 0.47 & 3.10 \\
\hline & 0.00 & 85.00 & 15.00 & \\
\hline & 0.00 & 5.88 & 1.49 & \\
\hline Total & 154 & 289 & 202 & 645 \\
\hline & 23.88 & 44.81 & 31.32 & 100.00 \\
\hline
\end{tabular}

Table 2 of HIGH_AAR by DECADE
Controlling for SEX=M: Male
\begin{tabular}{|c|c|c|c|c|}
\hline HIGH_AAR(Ankle/arm > 1.4) & \multicolumn{3}{|l|}{DECADE(Age Decade at EDIC Year 2 (Table 5))} & \\
\hline \begin{tabular}{l}
Frequency \\
Percent Row Pct Col Pct
\end{tabular} & 20-29 & 30-39 & 40-49 & Total \\
\hline 0: No & 114 & 338 & 232 & 684 \\
\hline & 16.08 & 47.67 & 32.72 & 96.47 \\
\hline & 16.67 & 49.42 & 33.92 & \\
\hline & 97.44 & 96.30 & 96.27 & \\
\hline 1: Yes & 3 & 13 & 9 & 25 \\
\hline & 0.42 & 1.83 & 1.27 & 3.53 \\
\hline & 12.00 & 52.00 & 36.00 & \\
\hline & 2.56 & 3.70 & 3.73 & \\
\hline Total & 117 & 351 & 241 & 709 \\
\hline & 16.50 & 49.51 & 33.99 & 100.00 \\
\hline
\end{tabular}

Frequency Missing = 1

\section*{EDIC BsIn Paper - Replicate Table 5}

The FREQ Procedure

Table 1 of lowhigh_aar by DECADE
Controlling for SEX=F: Female
DECADE(Age Decade at EDIC Year 2 (Table
lowhigh_aar
5))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & & 20-29 & 30-39 & 40-49 & Total \\
\hline & 0 & 150 & 265 & 192 & 607 \\
\hline & & 23.26 & 41.09 & 29.77 & 94.11 \\
\hline & & 24.71 & 43.66 & 31.63 & \\
\hline & & 97.40 & 91.70 & 95.05 & \\
\hline & 1 & 4 & 24 & 10 & 38 \\
\hline & & 0.62 & 3.72 & 1.55 & 5.89 \\
\hline & & 10.53 & 63.16 & 26.32 & \\
\hline & & 2.60 & 8.30 & 4.95 & \\
\hline \multirow[t]{2}{*}{Total} & & 154 & 289 & 202 & 645 \\
\hline & & 23.88 & 44.81 & 31.32 & 100.00 \\
\hline
\end{tabular}

Table 2 of lowhigh_aar by DECADE Controlling for SEX=M: Male

DECADE(Age Decade at EDIC Year 2 (Table
lowhigh_aar 5))

Frequency
Percent
Row Pct
\begin{tabular}{lrrrrr} 
Col Pct & & \(\mathbf{2 0 - 2 9}\) & \(\mathbf{3 0 - 3 9}\) & \(\mathbf{4 0} \mathbf{- 4 9}\) & Total \\
\hline & \(\mathbf{0}\) & 111 & 334 & 222 & 667 \\
& & 15.66 & 47.11 & 31.31 & 94.08 \\
& & 16.64 & 50.07 & 33.28 & \\
& & 94.87 & 95.16 & 92.12 & \\
& \(\mathbf{1}\) & 6 & 17 & 19 & 42 \\
& & 0.85 & 2.40 & 2.68 & 5.92 \\
& & 14.29 & 40.48 & 45.24 & \\
& & 5.13 & 4.84 & 7.88 & \\
Total & & 117 & 351 & 241 & 709 \\
& & 16.50 & 49.51 & 33.99 & 100.00
\end{tabular}

Frequency Missing = 1

\section*{EDIC BsIn Paper - Replicate Table 5}

The FREQ Procedure

Age Decade at EDIC Year 2 (Table 5)=20-29

Table of SEX by LOW_AAR
SEX(Gender
(coded M or
F)) LOW_AAR(Ankle/arm < 0.8)

Frequency
Percent
Row Pct
\begin{tabular}{lrrr} 
Col Pct & 0: No & 1: Yes & Total \\
\hline F: Female & 150 & 4 & 154 \\
& 55.35 & 1.48 & 56.83 \\
& 97.40 & 2.60 & \\
\multirow{2}{*}{ M: Male } & 56.82 & 57.14 & \\
& 114 & 3 & 117 \\
& 42.07 & 1.11 & 43.17 \\
& 97.44 & 2.56 & \\
Total & 43.18 & 42.86 & \\
& 264 & 7 & 271 \\
& 97.42 & 2.58 & 100.00 \\
\hline
\end{tabular}

Statistics for Table of SEX by LOW_AAR
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.0003 & 0.9863 \\
Likelihood Ratio Chi-Square & 1 & 0.0003 & 0.9863 \\
Continuity Adj. Chi-Square & 1 & 0.0000 & 1.0000 \\
Mantel-Haenszel Chi-Square & 1 & 0.0003 & 0.9864 \\
Phi Coefficient & & -0.0010 & \\
Contingency Coefficient & & 0.0010 & \\
Cramer's V & -0.0010 & \\
\hline
\end{tabular}

WARNING: \(50 \%\) of the cells have expected counts less
than 5. Chi-Square may not be a valid test.

\title{
EDIC BsIn Paper - Replicate Table 5
}

The FREQ Procedure

\section*{Statistics for Table of SEX by LOW_AAR}

Age Decade at EDIC Year 2 (Table 5)=20-29

Fisher's Exact Test
Cell \((\mathbf{1 , 1})\) Frequency (F) \(\quad 150\)

Left-sided \(\operatorname{Pr}<=\mathbf{F} \quad 0.6482\)
Right-sided Pr >= F 0.6494

Table Probability (P) 0.2976
Two-sided \(\mathbf{P r}<=\mathbf{P} \quad 1.0000\)

Sample Size = 271

\section*{EDIC BsIn Paper - Replicate Table 5}

The FREQ Procedure

Age Decade at EDIC Year 2 (Table 5)=30-39

Table of SEX by LOW_AAR
\begin{tabular}{lrrr}
\begin{tabular}{l} 
SEX(Gender \\
(coded M or \\
F))
\end{tabular} & LOW_AAR(Ankle/arm < 0.8) & \\
\begin{tabular}{l} 
Frequency \\
Percent \\
Row Pct
\end{tabular} & & & \\
Col Pct & & & \\
\hline \multicolumn{1}{c}{ F: Female } & 0: No & 1: Yes & Total \\
& 281 & 8 & 289 \\
& 43.91 & 1.25 & 45.16 \\
& 97.23 & 2.77 & \\
& 44.75 & 66.67 & \\
\multicolumn{1}{c}{ M: Male } & 347 & 4 & 351 \\
& 54.22 & 0.63 & 54.84 \\
& 98.86 & 1.14 & \\
& 55.25 & 33.33 & \\
Total & 628 & 12 & 640 \\
& 98.13 & 1.88 & 100.00 \\
\hline
\end{tabular}

\section*{Statistics for Table of SEX by LOW_AAR}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 2.2848 & 0.1306 \\
Likelihood Ratio Chi-Square & 1 & 2.2926 & 0.1300 \\
Continuity Adj. Chi-Square & 1 & 1.4854 & 0.2229 \\
Mantel-Haenszel Chi-Square & 1 & 2.2813 & 0.1309 \\
Phi Coefficient & & -0.0597 & \\
Contingency Coefficient & & 0.0596 & \\
Cramer's V & -0.0597 & \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 5
}

The FREQ Procedure

\section*{Statistics for Table of SEX by LOW_AAR}

Age Decade at EDIC Year 2 (Table 5)=30-39

Fisher's Exact Test
Cell \((\mathbf{1 , 1})\) Frequency (F) 281

Left-sided \(\operatorname{Pr}<=\mathbf{F} \quad 0.1117\)
Right-sided \(\operatorname{Pr}>=\mathbf{F} \quad 0.9649\)

Table Probability (P) 0.0766
Two-sided \(\operatorname{Pr}<=\mathbf{P} \quad 0.1515\)

Sample Size = 640

\section*{EDIC BsIn Paper - Replicate Table 5}

The FREQ Procedure

Age Decade at EDIC Year 2 (Table 5)=40-49

Table of SEX by LOW_AAR
\begin{tabular}{|c|c|c|c|}
\hline SEX(Gender (coded M or F)) & \multicolumn{3}{|l|}{LOW_AAR(Ankle/arm < 0.8)} \\
\hline \multicolumn{4}{|l|}{Frequency} \\
\hline \multicolumn{4}{|l|}{Percent} \\
\hline \multicolumn{4}{|l|}{Row Pct} \\
\hline Col Pct & 0: No & 1: Yes & Total \\
\hline \multirow[t]{4}{*}{F: Female} & 195 & 7 & 202 \\
\hline & 44.02 & 1.58 & 45.60 \\
\hline & 96.53 & 3.47 & \\
\hline & 45.77 & 41.18 & \\
\hline \multirow[t]{4}{*}{M: Male} & 231 & 10 & 241 \\
\hline & 52.14 & 2.26 & 54.40 \\
\hline & 95.85 & 4.15 & \\
\hline & 54.23 & 58.82 & \\
\hline \multirow[t]{2}{*}{Total} & 426 & 17 & 443 \\
\hline & 96.16 & 3.84 & 100.00 \\
\hline
\end{tabular}

Frequency Missing = 1

\section*{Statistics for Table of SEX by LOW_AAR}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.1393 & 0.7089 \\
Likelihood Ratio Chi-Square & 1 & 0.1402 & 0.7081 \\
Continuity Adj. Chi-Square & 1 & 0.0156 & 0.9005 \\
Mantel-Haenszel Chi-Square & 1 & 0.1390 & 0.7093 \\
Phi Coefficient & & 0.0177 & \\
Contingency Coefficient & & 0.0177 & \\
Cramer's V & & 0.0177 & \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 5
}

The FREQ Procedure
Statistics for Table of SEX by LOW_AAR
Age Decade at EDIC Year 2 (Table 5)=40-49

Fisher's Exact Test
Cell \((\mathbf{1 , 1})\) Frequency (F) 195
Left-sided \(\operatorname{Pr}<=\mathbf{F} \quad 0.7308\)
Right-sided \(\operatorname{Pr}>=\mathbf{F} \quad 0.4532\)

Table Probability (P) 0.1840
Two-sided \(\mathbf{P r}<=\mathbf{P} \quad 0.8067\)

Effective Sample Size \(=443\)
Frequency Missing = 1

The MEANS Procedure
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Gender (coded Mor F) & \begin{tabular}{l}
Age \\
Decade \\
When \\
IMT \\
Was \\
Taken \\
(Table \\
5)
\end{tabular} & \[
\begin{array}{r}
\mathbf{N} \\
\text { Obs }
\end{array}
\] & Variable & Label & N & Mean & Std Dev \\
\hline \multirow[t]{6}{*}{F: Female} & \multirow[t]{2}{*}{20-29} & \multirow[t]{2}{*}{172} & COMMON & Average maximum thickness: Common & 172 & 0.616 & 0.073 \\
\hline & & & INTERNAL & Average maximum thickness: Internal & 172 & 0.583 & 0.092 \\
\hline & \multirow[t]{2}{*}{30-39} & \multirow[t]{2}{*}{278} & COMMON & Average maximum thickness: Common & 278 & 0.657 & 0.081 \\
\hline & & & INTERNAL & Average maximum thickness: Internal & 278 & 0.632 & 0.147 \\
\hline & \multirow[t]{2}{*}{40-49} & \multirow[t]{2}{*}{178} & COMMON & Average maximum thickness: Common & 178 & 0.696 & 0.079 \\
\hline & & & INTERNAL & Average maximum thickness: Internal & 178 & 0.719 & 0.226 \\
\hline \multirow[t]{6}{*}{M: Male} & \multirow[t]{2}{*}{20-29} & \multirow[t]{2}{*}{125} & COMMON & Average maximum thickness: Common & 125 & 0.636 & 0.059 \\
\hline & & & INTERNAL & Average maximum thickness: Internal & 125 & 0.629 & 0.083 \\
\hline & \multirow[t]{2}{*}{30-39} & \multirow[t]{2}{*}{350} & COMMON & Average maximum thickness: Common & 350 & 0.684 & 0.083 \\
\hline & & & INTERNAL & Average maximum thickness: Internal & 350 & 0.684 & 0.114 \\
\hline & \multirow[t]{2}{*}{40-49} & \multirow[t]{2}{*}{211} & COMMON & Average maximum thickness: Common & 211 & 0.745 & 0.104 \\
\hline & & & INTERNAL & Average maximum thickness: Internal & 211 & 0.806 & 0.261 \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 6 \\ The FREQ Procedure
}

\section*{TREATMENT GROUP}
\begin{tabular}{lrrrr} 
GROUP & Frequency & Percent & \begin{tabular}{r} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{r} 
Cumulative \\
Percent
\end{tabular} \\
\hline EXPERIMENTAL: Intensive Treatment & 687 & 49.96 & 687 & 49.96 \\
STANDARD: Conventional Treatment & 688 & 50.04 & 1375 & 100.00 \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 6
}

The FREQ Procedure

Table of OBINSREG by GROUP
\begin{tabular}{|c|c|c|c|}
\hline OBINSREG(Current insulin regimen) & \multicolumn{2}{|l|}{GROUP(TREATMENT GROUP)} & \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & \begin{tabular}{l}
EXPERIMENTAL: \\
Intensive Treatment
\end{tabular} & STANDARD: Conventional Treatment & Total \\
\hline \multirow[t]{4}{*}{CSII} & 253 & 86 & 339 \\
\hline & 18.49 & 6.29 & 24.78 \\
\hline & 74.63 & 25.37 & \\
\hline & 36.99 & 12.57 & \\
\hline \multirow[t]{4}{*}{MDI} & 394 & 389 & 783 \\
\hline & 28.80 & 28.44 & 57.24 \\
\hline & 50.32 & 49.68 & \\
\hline & 57.60 & 56.87 & \\
\hline \multirow[t]{4}{*}{1-2 injections} & 36 & 207 & 243 \\
\hline & 2.63 & 15.13 & 17.76 \\
\hline & 14.81 & 85.19 & \\
\hline & 5.26 & 30.26 & \\
\hline \multirow[t]{4}{*}{Other} & 1 & 2 & 3 \\
\hline & 0.07 & 0.15 & 0.22 \\
\hline & 33.33 & 66.67 & \\
\hline & 0.15 & 0.29 & \\
\hline \multirow[t]{3}{*}{Total} & 684 & 684 & 1368 \\
\hline & 50.00 & 50.00 & 100.00 \\
\hline & Frequency Missing \(=7\) & & \\
\hline
\end{tabular}

\section*{Statistics for Table of OBINSREG by GROUP}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 3 & 202.9670 & \(<.0001\) \\
Likelihood Ratio Chi-Square & 3 & 219.3409 & \(<.0001\) \\
Mantel-Haenszel Chi-Square & 1 & 196.4286 & \(<.0001\) \\
Phi Coefficient & & 0.3852 & \\
Contingency Coefficient & & 0.3594 & \\
Cramer's V & 0.3852 & \\
\hline
\end{tabular}

WARNING: 25\% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.

\title{
EDIC BsIn Paper - Replicate Table 6 \\ The FREQ Procedure \\ Statistics for Table of OBINSREG by GROUP
}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Table Probability (P) & \(4.931 \mathrm{E}-51\) \\
\(\operatorname{Pr}<=\mathbf{P}\) & \(5.771 \mathrm{E}-48\) \\
\hline \multicolumn{2}{c}{ Effective Sample Size \(=\mathbf{1 3 6 8}\)} \\
Frequency Missing \(=\mathbf{7}\)
\end{tabular}

Table of HUM_INS by GROUP
\begin{tabular}{|c|c|c|c|}
\hline HUM_INS(Reports using human insulin) & GROUP(TREATME & NT GROUP) & \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & \begin{tabular}{l}
EXPERIMENTAL: \\
Intensive Treatment
\end{tabular} & STANDARD: Conventional Treatment & Total \\
\hline 0: No & 61 & 63 & 124 \\
\hline & 4.46 & 4.60 & 9.06 \\
\hline & 49.19 & 50.81 & \\
\hline & 8.91 & 9.21 & \\
\hline 1: Yes & 624 & 621 & 1245 \\
\hline & 45.58 & 45.36 & 90.94 \\
\hline & 50.12 & 49.88 & \\
\hline & 91.09 & 90.79 & \\
\hline Total & 685 & 684 & 1369 \\
\hline & 50.04 & 49.96 & 100.00 \\
\hline
\end{tabular}

Frequency Missing = 6

Statistics for Table of HUM_INS by GROUP
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.0388 & 0.8439 \\
Likelihood Ratio Chi-Square & 1 & 0.0388 & 0.8439 \\
Continuity Adj. Chi-Square & 1 & 0.0105 & 0.9182 \\
Mantel-Haenszel Chi-Square & 1 & 0.0387 & 0.8440 \\
Phi Coefficient & & -0.0053 & \\
Contingency Coefficient & & 0.0053 & \\
Cramer's V & -0.0053 & \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 6 \\ The FREQ Procedure \\ Statistics for Table of HUM_INS by GROUP
}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 61 \\
Left-sided Pr <= F & 0.4591 \\
Right-sided Pr >= F & 0.6144 \\
& \\
Table Probability (P) & 0.0736 \\
Two-sided Pr <= P & 0.8512 \\
\hline
\end{tabular}

Effective Sample Size \(=1369\)
Frequency Missing = 6

Table of SBGM_4 by GROUP
SBGM_4(SBGM
=> 4 times/day) GROUP(TREATMENT GROUP)


Frequency Missing = 6

Statistics for Table of SBGM_4 by GROUP
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 14.1617 & 0.0002 \\
Likelihood Ratio Chi-Square & 1 & 14.1895 & 0.0002 \\
Continuity Adj. Chi-Square & 1 & 13.7517 & 0.0002 \\
Mantel-Haenszel Chi-Square & 1 & 14.1513 & 0.0002 \\
\multicolumn{1}{c}{ DCCT-EDIC Baseline DSIC - Adpendix. .0. 63}
\end{tabular}
\begin{tabular}{l|rl}
\multicolumn{1}{c}{ EDIC BsIn Paper - Replicate Table 6} \\
\multicolumn{2}{c}{ The FREQ Procedure } \\
& & \\
Statistics for Table of SBGM_4 by & \\
& DFROUP & Value \\
\hline Statistic & -0.1017 & \\
\hline Phi Coefficient & 0.1012 & \\
\hline Contingency Coefficient & -0.1017 & \\
\hline Cramer's V & & \\
\hline
\end{tabular}

Fisher's Exact Test
Cell \((1,1)\) Frequency ( \(F\)
367
Left-sided \(\operatorname{Pr}<=\mathbf{F} \quad\) 1.030E-04
Right-sided \(\operatorname{Pr}>=\mathbf{F}\)
0.9999

Table Probability (P) 3.670E-05
Two-sided \(\mathbf{P r}<=\mathbf{P} \quad 1.889 \mathrm{E}-04\)
Effective Sample Size = 1369
Frequency Missing = 6

\title{
EDIC BsIn Paper - Replicate Table 6
}

The MEANS Procedure

Analysis Variable : STD_INS Insulin dose (units/kg/day)
\begin{tabular}{lrrrr} 
TREATMENT GROUP & \begin{tabular}{r} 
N \\
Obs
\end{tabular} & N & Mean & Std Dev \\
\hline EXPERIMENTAL: Intensive Treatment & 687 & 685 & 0.75 & 0.28 \\
STANDARD: Conventional Treatment & 688 & 684 & 0.67 & 0.20 \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 6
}

The NPAR1WAY Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable STD_INS Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & Expected Under H0 & \begin{tabular}{l}
Std Dev \\
Under H0
\end{tabular} & Mean Score \\
\hline EXPERIMENTAL: Intensive Treatment & 685 & 507914.50 & 469225.0 & 7313.79782 & 741.481022 \\
\hline STANDARD: Conventional Treatment & 684 & 429850.50 & 468540.0 & 7313.79782 & 628.436404 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Wilcoxon Two-Sample Test } \\
\hline Statistic & 429850.5000 \\
& \\
Normal Approximation & \\
Z & -5.2899 \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & \(<.0001\) \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & \(<.0001\) \\
& \\
t Approximation & \\
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & \(<.0001\) \\
Two-Sided Pr > |Z| & \(<.0001\) \\
\hline \(\mathbf{Z}\) includes a continuity correction of \\
\multicolumn{2}{c}{\(\mathbf{0 . 5}\)} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 27.9834 \\
DF & 1 \\
Pr \(>\) Chi-Square & \(<.0001\) \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 6 mean rates per year \\ The MEANS Procedure
}
\begin{tabular}{lrlrr}
\hline & \multicolumn{2}{c}{ N } & & \\
TREATMENT GROUP & Obs & Variable & Mean \\
\hline EXPERIMENTAL: Intensive Treatment & 687 & pt_cs_b & 6.20 \\
& & pt_ra_b & 24.87 \\
& & pt_dka_b & 2.76 \\
STANDARD: Conventional Treatment & 688 & pt_cs_b & 7.16 \\
& & pt_r_b_b & 26.32 \\
& & pt_dka_b & 2.36 \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 6 \\ mean rates per year
}

\section*{The NPAR1WAY Procedure}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable pt_cs_b Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & Expected Under H0 & Std Dev Under H0 & Mean Score \\
\hline EXPERIMENTAL: Intensive Treatment & 685 & 467944.0 & 468882.50 & 3717.01596 & 683.129927 \\
\hline STANDARD: Conventional Treatment & 683 & 468452.0 & 467513.50 & 3717.01596 & 685.874085 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 468452.0000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 0.2524 \\
\hline One-Sided \(\mathrm{Pr}>\mathrm{Z}\) & 0.4004 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.8008 \\
\hline \multicolumn{2}{|l|}{\(t\) Approximation} \\
\hline One-Sided Pr > Z & 0.4004 \\
\hline Two-Sided Pr > \(|\mathbf{Z}|\) & 0.8008 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 0.0637 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.8007 \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 6 \\ mean rates per year
}

\section*{The NPAR1WAY Procedure}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable pt_ra_b Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & Expected Under H0 & Std Dev Under H0 & Mean Score \\
\hline EXPERIMENTAL: Intensive Treatment & 685 & 468745.50 & 468882.50 & 5506.92950 & 684.300000 \\
\hline STANDARD: Conventional Treatment & 683 & 467650.50 & 467513.50 & 5506.92950 & 684.700586 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 467650.5000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 0.0248 \\
\hline One-Sided Pr > Z & 0.4901 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.9802 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & 0.4901 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.9802 \\
\hline \multicolumn{2}{|l|}{\(Z\) includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 0.0006 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.9802 \\
\hline
\end{tabular}

\title{
EDIC BsIn Paper - Replicate Table 6 \\ mean rates per year
}

\section*{The NPAR1WAY Procedure}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable pt_dka_b Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & \begin{tabular}{l}
Expected \\
Under H0
\end{tabular} & Std Dev Under H0 & Mean Score \\
\hline EXPERIMENTAL: Intensive Treatment & 685 & 468891.50 & 468882.50 & 2550.50866 & 684.513139 \\
\hline STANDARD: Conventional Treatment & 683 & 467504.50 & 467513.50 & 2550.50866 & 684.486823 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Wilcoxon Two-Sample Test } \\
\hline Statistic & 467504.5000 \\
& \\
Normal Approximation & \\
\(\mathbf{Z}\) & -0.0033 \\
One-Sided Pr < Z & 0.4987 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.9973 \\
& \\
t Approximation \\
One-Sided Pr < Z \\
Two-Sided Pr > \(|\mathbf{Z}|\) & 0.4987 \\
\hline Z includes a continuity correction of \\
\multicolumn{2}{c}{\(\mathbf{0 . 5}\)} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 0.0000 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.9972 \\
\hline
\end{tabular}

Table 1 of OW by GROUP
Controlling for SEX=F: Female
\begin{tabular}{|c|c|c|c|}
\hline OW(Overweight (BMI>=27.8 M, 27.3 F)(Table6)) & \multicolumn{3}{|l|}{GROUP(TREATMENT GROUP)} \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & \begin{tabular}{l}
EXPERIMENTAL: \\
Intensive Treatment
\end{tabular} & STANDARD: Conventional Treatment & Total \\
\hline 0: No & 207 & 237 & 444 \\
\hline & 31.80 & 36.41 & 68.20 \\
\hline & 46.62 & 53.38 & \\
\hline & 61.98 & 74.76 & \\
\hline 1: Yes & 127 & 80 & 207 \\
\hline & 19.51 & 12.29 & 31.80 \\
\hline & 61.35 & 38.65 & \\
\hline & 38.02 & 25.24 & \\
\hline \multirow[t]{3}{*}{Total} & 334 & 317 & 651 \\
\hline & 51.31 & 48.69 & 100.00 \\
\hline & \multicolumn{3}{|l|}{Frequency Missing \(=4\)} \\
\hline
\end{tabular}

\section*{Statistics for Table 1 of OW by GROUP Controlling for SEX=F: Female}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 12.2630 & 0.0005 \\
Likelihood Ratio Chi-Square & 1 & 12.3497 & 0.0004 \\
Continuity Adj. Chi-Square & 1 & 11.6804 & 0.0006 \\
Mantel-Haenszel Chi-Square & 1 & 12.2441 & 0.0005 \\
Phi Coefficient & & -0.1372 & \\
Contingency Coefficient & & 0.1360 & \\
Cramer's V & -0.1372 & \\
\hline
\end{tabular}

Statistics for Table 1 of OW by GROUP
Controlling for SEX=F: Female
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 207 \\
Left-sided \(\operatorname{Pr}<=\) F & \(3.038 \mathrm{E}-04\) \\
Right-sided \(\operatorname{Pr}>=\) F & 0.9998
\end{tabular}
\begin{tabular}{ll} 
Table Probability \((\mathbf{P})\) & \(1.436 \mathrm{E}-04\) \\
Two-sided \(\operatorname{Pr}<=\mathbf{P}\) & \(5.443 \mathrm{E}-04\) \\
\hline
\end{tabular}
\begin{tabular}{lrr}
\hline Statistic & Value & ASE \\
\hline Gamma & -0.2902 & 0.0785 \\
Kendall's Tau-b & -0.1372 & 0.0385 \\
Stuart's Tau-c & -0.1278 & 0.0360 \\
\hline \hline Somers' D C|R & -0.1473 & 0.0413 \\
Somers' D R|C & -0.1279 & 0.0361 \\
\hline \hline Pearson Correlation & -0.1372 & 0.0385 \\
Spearman Correlation & -0.1372 & 0.0385 \\
\hline \hline Lambda Asymmetric C|R & 0.0946 & 0.0632 \\
Lambda Asymmetric R|C & 0.0000 & 0.0000 \\
Lambda Symmetric & 0.0573 & 0.0391 \\
\hline \hline Uncertainty Coefficient C|R & 0.0137 & 0.0077 \\
Uncertainty Coefficient R|C & 0.0152 & 0.0086 \\
Uncertainty Coefficient Symmetric & 0.0144 & 0.0081 \\
\hline
\end{tabular}
\begin{tabular}{lccc}
\hline \multicolumn{4}{c}{ Estimates of the Relative Risk (Row1/Row2) } \\
Type of Study & Value & \(\mathbf{9 5 \%}\) & Confidence Limits \\
\hline Case-Control (Odds Ratio) & 0.5502 & 0.3931 & 0.7701 \\
Cohort (Col1 Risk) & 0.7599 & 0.6560 & 0.8802 \\
Cohort (Col2 Risk) & 1.3812 & 1.1394 & 1.6742 \\
\hline
\end{tabular}

Effective Sample Size = 651
Frequency Missing = 4

Table 2 of OW by GROUP
Controlling for SEX=M: Male
\begin{tabular}{|c|c|c|c|}
\hline OW(Overweight (BMI \(>=\mathbf{2 7 . 8} \mathrm{M}\), 27.3 F)(Table6)) & \multicolumn{3}{|l|}{GROUP(TREATMENT GROUP)} \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & \begin{tabular}{l}
EXPERIMENTAL: \\
Intensive Treatment
\end{tabular} & STANDARD: Conventional Treatment & Total \\
\hline 0: No & 237 & 258 & 495 \\
\hline & 33.01 & 35.93 & 68.94 \\
\hline & 47.88 & 52.12 & \\
\hline & 67.52 & 70.30 & \\
\hline 1: Yes & 114 & 109 & 223 \\
\hline & 15.88 & 15.18 & 31.06 \\
\hline & 51.12 & 48.88 & \\
\hline & 32.48 & 29.70 & \\
\hline \multirow[t]{3}{*}{Total} & 351 & 367 & 718 \\
\hline & 48.89 & 51.11 & 100.00 \\
\hline & \multicolumn{3}{|l|}{Frequency Missing \(=2\)} \\
\hline
\end{tabular}

\section*{Statistics for Table 2 of OW by GROUP Controlling for SEX=M: Male}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.6468 & 0.4213 \\
Likelihood Ratio Chi-Square & 1 & 0.6467 & 0.4213 \\
Continuity Adj. Chi-Square & 1 & 0.5235 & 0.4693 \\
Mantel-Haenszel Chi-Square & 1 & 0.6459 & 0.4216 \\
Phi Coefficient & & -0.0300 & \\
Contingency Coefficient & & 0.0300 & \\
Cramer's V & -0.0300 & \\
\hline
\end{tabular}

\title{
The FREQ Procedure
}

\section*{Statistics for Table 2 of OW by GROUP Controlling for SEX=M: Male}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 237 \\
Left-sided Pr <= F & 0.2347 \\
Right-sided Pr >= F & 0.8119 \\
& \\
Table Probability (P) & 0.0466 \\
Two-sided Pr <= P & 0.4679 \\
\hline
\end{tabular}
\begin{tabular}{lrr}
\hline Statistic & Value & ASE \\
\hline Gamma & -0.0648 & 0.0803 \\
Kendall's Tau-b & -0.0300 & 0.0373 \\
Stuart's Tau-c & -0.0278 & 0.0345 \\
\hline \hline Somers' D C|R & -0.0324 & 0.0403 \\
Somers' D R|C & -0.0278 & 0.0346 \\
\hline \hline Pearson Correlation & -0.0300 & 0.0373 \\
Spearman Correlation & 0.0142 & 0.0422 \\
\hline \hline Lambda Asymmetric C|R & 0.0000 & 0.0000 \\
Lambda Asymmetric R|C & 0.0087 & 0.0259 \\
\hline Lambda Symmetric & 0.0006 & 0.0016 \\
\hline \hline Uncertainty Coefficient C|R & 0.0007 & 0.0018 \\
\hline Uncertainty Coefficient R|C & 0.0007 & 0.0017 \\
\hline Uncertainty Coefficient Symmetric & & \\
\hline
\end{tabular}
\begin{tabular}{lccc}
\hline \multicolumn{4}{c}{ Estimates of the Relative Risk (Row1/Row2) } \\
Type of Study & Value & \(\mathbf{9 5 \%}\) & Confidence Limits \\
\hline Case-Control (Odds Ratio) & 0.8783 & 0.6402 & 1.2051 \\
Cohort (Col1 Risk) & 0.9366 & 0.7998 & 1.0967 \\
Cohort (Col2 Risk) & 1.0663 & 0.9100 & 1.2496 \\
\hline
\end{tabular}

Effective Sample Size = 718 Frequency Missing = 2

The FREQ Procedure
Summary Statistics for OW by GROUP
Controlling for SEX
\begin{tabular}{rlrcr}
\hline \multicolumn{5}{c}{ Cochran-Mantel-Haenszel Statistics (Based on Table Scores) } \\
Statistic & Alternative Hypothesis & DF & Value & Prob \\
\hline \(\mathbf{1}\) & Nonzero Correlation & 1 & 9.0075 & 0.0027 \\
\(\mathbf{2}\) & Row Mean Scores Differ & 1 & 9.0075 & 0.0027 \\
\(\mathbf{3}\) & General Association & 1 & 9.0075 & 0.0027 \\
\hline
\end{tabular}

Estimates of the Common Relative Risk (Row1/Row2)
\begin{tabular}{llccc} 
Type of Study & Method & Value & 95\% & Confidence Limits \\
\hline Case-Control & Mantel-Haenszel & 0.7043 & 0.5600 & 0.8859 \\
(Odds Ratio) & Logit & 0.7051 & 0.5600 & 0.8878 \\
\hline \hline Cohort & Mantel-Haenszel & 0.8439 & 0.7578 & 0.9399 \\
(Col1 Risk) & Logit & 0.8373 & 0.7520 & 0.9324 \\
\hline \hline Cohort & Mantel-Haenszel & 1.1988 & 1.0603 & 1.3553 \\
(Col2 Risk) & Logit & 1.1840 & 1.0476 & 1.3381 \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{\begin{tabular}{c} 
Breslow-Day Test for \\
Homogeneity of the Odds Ratios
\end{tabular}} \\
\hline Chi-Square & 3.9513 \\
DF & 1 \\
Pr \(>\mathbf{C h i S q}\) & 0.0468 \\
\hline
\end{tabular}

Effective Sample Size \(=1369\)
Frequency Missing = 6```


[^0]:    ${ }^{a}$ In determining statistical significance of differences in group means or percentages, Wilcoxon rank-sum tests were used for continuous variables, and chi-square tests were used for categorical variables. These statistical methods are the same as those outlined in the footnotes in the published tables, with the exception of the comparison of event rates (see discussion under Diabetes management of EDIC cohort during the first 2 years of EDIC, p. 7 of this DSIC).

[^1]:    ${ }^{\mathrm{b}}$ The DCC acknowledges the discrepancy between the 50 nonparticipants in published data, and the 53 nonparticipants in archived data.

[^2]:    ${ }^{\text {c }}$ Three subjects - one male and two females - are identified as EDIC participants in the archived dataset, but have no EDIC data except IMT in one subject. When these subjects are removed, the gender breakdowns on archived data match published gender breakdowns.

[^3]:    ${ }^{\text {d }}$ Published n's for systolic blood pressure ratio are the largest n for an individual measure (right SBP ratio, left SBP ratio, prevalence of abnormal ankle-to-arm ratio)
    ${ }^{\text {e }}$ The published heading, "Percent < 1.4 ", is clearly a typographical error.
    ${ }^{\mathrm{f}}$ One male DCCT subject, aged 20-29, had IMT data collected for EDIC, but died soon after. He is identified in the archived dataset as not an EDIC subject (IN_EDIC=0). Analyses of archived data match published results only when his IMT data are included in the sample. The DCC has confirmed that IMT was analyzed as a separate study from EDIC.

[^4]:    ${ }^{\mathrm{g}}$ Event rates were calculated by multiplying each individual daily rate -- available in the archived dataset -- by a constant (365.25) to get the yearly rate, and then taking the mean across individuals. To compare group event rates, Wilcoxon's rank sum test was used. This is in contrast to published analyses methods, where a Wald test of the logrelative, adjusted for overdispersion, was used to compare event rates. However, conclusions resulting from statistical comparisons remained the same between analyses of archived data and published results.

[^5]:    The EDIC research group is sponsored by the Division of Diabetes, Endocrinology and Metabolic Diseases of the Sational Institure of Diabetes and Digestive and Kidncy Diseases. the Xational mstiutes of Heath. through research wontacts and by the General Clinical Research Center Program, National Center for Rescarch Resources, National instulutes of Heath.

    Address correspondence and reprint requests to EDIC Research Group. Box YDICIDCCT, Bethesia. MD 20892.

    Recered for publication 22 May 1998 and accepted in revised form 17 September 1998.
    A complete listing of the EDIC Research Group appears in scknowlemantis.
    Abbreviations: CAD. coronary artery discasc; CSII, concinuous subcuaneous insulin inlusion: DCCT, Diabetes Controi and Complications Trial: DKA diabetic ketaacidosis: ECG. electrocardiogram: EDIC. Epidemiology of Diabetes Intervention and Complications: ETIDRS. Early Treatment of Diabetic Ret nopathy Sudy: HRQOL.. healh-related quality of Ife: MDI, maltiple daily injections: MI, myocardial infaretion: MNSi, Mihhigan Neuropathy Screening Instrument: NIDDK. National Institute of Diabetes, Digestive and Kidney Diseases: PDR. prollferative diabetic retinopathy: PVD, peripheral vascular disease, WESDR, Wisconsin Epidemiologic Sudy of Diabenc Retinopathy:

    A table elisevhere ia this issue shows convertienal and Système International (SI) units and conversion facters fer many substances.

[^6]:    References

    1. Jacobs J, Sena M, Fox N: The cost of hospitalization for the late complications of diabetes in the United States. Diabet Med 8:S23-S29, 1991
    2. Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T: Díabetic nephropathy in type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 25:496-501, 1983
    3. DCCT Research Group: The effect of intensive diabetes treatment on the development
