S. Tan
NIDDK Repository
February 28, 2007

DCCT-EDIC Diabetic Nephropathy Analysis File Dataset Integrity Check

As a partial check of the integrity of the DCCT-EDIC datasets archived in the NIDDK data repository, a set of analyses were performed to verify that selected published results from the DCCT-EDIC study can be reproduced using archived datasets. A small number of analyses were performed to duplicate published results on diabetic nephropathy reported by the DCCT-EDIC Research Group in 2003 in the Journal of the American Medical Association (JAMA, [290(16)]). Results of the dataset integrity check are described below.

The intent of this dataset integrity check is to provide confidence that the dataset distributed by the NIDDK repository is a true copy of the study data. Our intent is not to assess the integrity of the statistical analyses reported by study investigators. As with all statistical analyses of complex datasets, complete replication of a set of statistical results should not be expected on a first (or second) exercise in secondary analysis. This occurs for a number of reasons including differences in the handling of missing data, restrictions on cases included in samples for a particular analysis, software coding used to define complex variables, etc. Experience suggests that most discrepancies can ordinarily be resolved by consultation with the study DCC, however this process is labor-intensive for both DCC and Repository staff. It is thus not our policy to resolve every discrepancy that is observed in a dataset integrity check. Thus, we do not attempt to resolve minor or inconsequential discrepancies with published results or discrepancies that involve complex analyses unless staff of the NIDDK Repository suspect that the observed discrepancy suggests that the dataset may have been corrupted in storage, transmission, or processing by repository staff. We do, however, document in footnotes to the dataset integrity check those instances in which our secondary analyses produced results that were not fully consistent with those reported in the target publication.

DCCT-EDIC Nephropathy Analysis. The DCCT-EDIC Research Group reports results for 1349 participants who completed the DCCT study and were recruited into EDIC. Of these 1349, 676 were originally assigned to "intensive treatment", and the remaining 673 were assigned "conventional treatment." Table 1 compares the published breakdown to results obtained from the dataset extracted from the archived dataset. The table published by the study group in JAMA breaks down the EDIC study sample by original DCCT treatment allocation. Table 1 compares this published breakdown to results obtained from the dataset extracted from the archived SAS CIMPORT file edicREN8.xpt. As Table 1 shows, the counts, percentages, means, and standard deviations obtained from analyses of the archived data closely match the published tabulations. The limited number of small discrepancies may be due to differences in rounding conventions. With one exception ${ }^{1}, P$-values for tests of differences between treatment groups calculated from archived data exactly match the published results; see Table 1.

[^0]TABLE 1. Participant Characteristics at Study Baseline: Top panel is calculated from Archived Data; Bottom panel contains published results.

Label	Variable	Intensive ($\mathrm{n}=676$)		Conventional ($n=673$)		PValue
Attained age, mean (SD), y	ATT_AGE	34	(7)	33	(7)	0.11
Women, No (\%)	SEX	330	(49)	313	(47)	0.40
Attained Duration at DCCT Closeout, mean (SD), y	ATT_DU99	12	(5)	12	(5)	0.15
HbA1c, mean (SD), \%	HBA1C	7.4	(1.1)	9.1	(1.6)	<0.0001
Body mass index, mean (SD), kg/m*2	BMI	26.5	(4)	25.0	(3)	<0.0001
Smoking, No. (\%)	SMOKE99	155	(23)	145	(22)	0.54
LDL, mean (SD), mg/dL	LDL	113	(27)	115	(32)	0.39
Albumin excretion rate, mg/day						
Median (IQR)	AER	8.6	$\begin{aligned} & 5.8- \\ & 14.4 \end{aligned}$	10.1	5.8-20.2	<0.0001
>28 mg/min, No. (\%)	CLOSE_40	50	(7.4)	87	(12.9)	0.0008
>208 mg/min, No. (\%)	CLOSE300	10	(1.5)	20	(3.0)	0.06
Serum creatinine, mean (SD)	SERUMCR	0.85	(0.15)	0.84	(0.17)	0.12
GFR at DCCT Closeout, mean (SD)	GFRXB99	125	(20)	126	(21)	0.26
<70 mL/min per $1.73 \mathrm{~m}^{2}$, No. (\%)	GFRXB70	2	(0.4)	3	(0.6)	0.68
Standard creatinine clearance, mean (SD)	STDCLR	122	(26)	122	(26)	
<70 mL/min per $1.73 \mathrm{~m}^{2}$, No. (\%)	CLR_70	10	(1.5)	10	(1.5)	0.99
Blood pressure, mm Hg						
>140/90, confirmed, No. (\%)	HT	74	(11)	71	(11)	0.81
>130/80, unconfirmed, No. (\%)	F2_HT130	260	(39)	242	(36)	0.35
MAP, mean (SD), [2/3 DBP + 1/3 SBP]	MAP	89	(9)	88	(9)	0.26
Heart rate, mean (SD), bpm	PULSE	75	(10)	75	(11)	0.19

Characteristic	Original DCCT Treatment Group		
	Intensive $(\mathrm{n}=676)$	Conventional $(\mathrm{n}=673)$	P Value*
Age, mean (SD), y	34 (7)	33 (7)	. 11
Women, No. (\%)	330 (49)	313 (46)	. 40
Diabetes oluration, mean (SD). y	12 (5)	12 (5)	$>.99$
$\mathrm{HbA}_{\text {tc, }}$ mean (SD). \%	7.4 (1.1)	9.1 (1.6)	$<.001$
Body mass inclex, mean (SD) \dagger	26.5 (4)	25.0 (3)	$<.001$
Smoking, No. (\%)	155 (23)	145 (22)	. 54
LDL-C, mean (SD), mg/dL	113 (27)	115 (32)	. 39
Aloumin excretion ratef Mocian (lQR), mg/24 h	8.6 (5.8-14.4)	10.1 (5.8-20.2)	$<.001$
$>28 \mu \mathrm{~g} / \mathrm{min}$, No. (\%)	$50(7.4)$	87 (12.9)	$<.001$
$>208 \mu \mathrm{~g} / \mathrm{min}, \mathrm{Na}$. (\%)	$10(1.5)$	20 (3.0)	. 06
Serum creatinine, mean (SD), mg/dL	$0.85(0.17)$	0.84 (0.15)	. 12
GFR by ${ }^{125}$-iothalamate clearance. mean (SD). $\mathrm{mL} / \mathrm{min}$ per $1.73 \mathrm{~m}^{2}$	125 (20)	126 (21)	26
$<70 \mathrm{~mL} / \mathrm{m}$ in per $1.73 \mathrm{~m}^{2}$. No. (9\%)	2 (0.4)	3 (0.6)	. 68
Standard creatirine clearance. mean (SD). $\mathrm{mL} / \mathrm{min}$ per $1.73 \mathrm{~m}^{2}$	122 (26)	122 (26)	. 57
$<70 \mathrm{~mL} / \mathrm{min}$ per $1.73 \mathrm{~m}^{2}$. No. (96)	10 (1.5)	10 (1.5)	. 99
Blood pressure, mm Hg $\geq 140 / \mathrm{go}$, confirmed, No. (\%)	74 (11)	71 (11)	81
$\geq 130 / 8 \mathrm{BO}$, unconfirmed, No. (\%)	260 (39)	242 (36)	. 35
Arterial pressure, mean (SD), mm Hg§	89 (9)	88 (9)	. 26
Heart rate, mean (SD), beats/min	75 (10)	75 (10)	.19
Abbreviations: DCCT, Diebetes Control and Corn Complications; GFA, glorneruler filtration rate; density lpoprotein cholesterol. SI oonversion factors: To oonvert LDL-C to mmo pmoll, rrultiply mg/d walues bys8.4; to ocnw values by 0.0167. *From Wiocooon rank-surn test foontinuous varia tCalculated as weight in kiograms divided by the \pm Based on 4 -hour collection of urine. SMean arterial pressure $=2 / 3$ diastolic pressure	ns Trial; EDIC, Epi ,cosylated hernoglo tiply mgid values and standard crea x^{2} or Fisher excact of height in meter stolic pressure.	ology of Diabetes I IOA, irterquartile ra 0259; to cormert ser clearence to mL / s, (categorical variabl	antione and DL-C. lowreatinine to iply mL/min

$\mathbf{H b A}_{\mathbf{1 c}}$ Level. Figure 1 compares the published distribution of $\mathrm{HbA}_{1 c}$ concentration by treatment group at DCCT closeout and each year of the EDIC study to corresponding distributions calculated from archived data. Visual comparison of box-and-whisker plots show no obvious differences between published results and results from analysis of archived data (Figure 1). In addition, published results of statistical comparisons of average $\mathrm{HbA}_{1 \mathrm{c}}$ concentration between groups at each time point exactly match the results of analyses using archived data. Finally, the text published by the study group states that the "mean values of $\mathrm{HbA}_{1 \mathrm{c}}$ throughout the 8-year period of the EDIC study were 8.0% in the group that received intensive treatment during the DCCT and 8.2% in the group that received conventional treatment ($P=0.002$ by Wilcoxon ranksum test)". Group comparisons of individual subject-means calculated on archived data yielded an average $\mathrm{HbA}_{1 \mathrm{c}}$ concentration of 8.0% in the intensive treatment group, and of 8.3% in the group that received conventional treatment. This slight difference could be due to rounding error.

Figure 1. Distribution of $\mathrm{HbA}_{1 \mathrm{c}}$ Concentration by Randomized Treatment Group at the End of the DCCT and in Each Year of the EDIC Study

DCCT indicates Diabetes Control and Complications Trial; EDIC, Epidemiology of Diabetes Interventions and Complications; HbA ${ }_{k}$, glycosylated hemogbbin. Boxes indicate 25 th and 75 th percentiles of HbA 隹 level, whiskers, 5 th and 95 th percentiles, heavy horizontal lines, medians; thin horizontal lines, means.

Microalbuminuria. The text published by the study group states there were 572 participants originally assigned to receive intensive treatment for diabetes whose AERs were normal (<28 $\mathrm{mg} / \mathrm{min}$) at both the beginning and at the end of the DCCT. Of this risk group, 39 (6.8\%) exhibited microalbuminuria at the EDIC year 7 or year 8 examination. Analyses of the archived study data confirmed these numbers, after restricting the baseline risk set to those with nonmissing AER data at the year 7 or year 8 evaluation. ${ }^{2}$

Clinical Albuminuria The published text reported that there were 632 participants originally assigned to receive intensive treatment for diabetes who did not exhibit clinical albuminuria at the end of the DCCT. Of this risk group, 9 (1.4\%) exhibited clinical albuminuria at the EDIC year 7 or year 8 examinations. Analyses of archived data confirmed these numbers, after restricting the baseline risk set to those with AER data at the year 7 or year 8 evaluation. Our analysis for the group receiving conventional treatment replicated the published result with a minor discrepancy. ${ }^{3}$

Other Kidney Outcomes. The published text states that twenty-seven patients doubled their serum creatinine concentration since DCCT baseline (published Table 2). Of these 27, 10 (1.5\%) were formerly in the intensive treatment group, and 17 (2.5\%) were formerly undergoing conventional treatment. Analyses of the archived study data confirmed that 27 patients had doubled their serum creatinine concentration since DCCT baseline; however, from our analysis it appeared that 9 were formerly undergoing intensive treatment, while 18 were undergoing conventional treatment. ${ }^{4}$
Blood Pressure/Hypertension. Exactly as reported in the published text (p.2164), analyses of archived data demonstrated that the prevalence of hypertension did not differ between treatment groups at the end of the DCCT (11% in both groups, $P=0.81$, from both Wald's and Chi-square tests). [(Include the next two sentences? They basically describe the analysis that accompanies the bar chart (Figure 4), which we already talk about in the next-to-last sentence:] The text also states that more participants in the original conventional-treatment group developed hypertension over time, with the difference becoming significant during years 3 through 8 of the EDIC study. Analyses of archived data demonstrated the same result.] Exactly as stated in the text, analyses of archived data showed the prevalence of hypertension in the conventional-treatment group was 40.3%, as compared to 29.9% in the intensive treatment group, in year 8 of the study ($P<0.001$, by both Wald's and Chi-square tests). Lastly, visual comparisons of the prevalence of hypertension at each year of the EDIC study (figure 4) with unadjusted analyses of archived data show no major differences. Any slight differences could be due to the effect of adjusting for baseline covariates in the published results.

[^1]Figure 4. Prevalence of Hypertension at Each Year of the EDIC Study (analysis of archived data)

EDIC Year

Figure 4. Prevalence of Hypertension at Each Year of the EDIC Study

[^2]
APPENDIX A

Full Text of Article

[^3]
APPENDIX B

SAS 9.1 Code and Output for Replication of Table 1: Participant Characteristics at EDIC Study Baseline, from EDIC Nephropathy Dataset in NIDDK Repository

The SAS System: Baseline Characteristics (Table 1)

SAS Log file for Data read-in and Baseline Characteristics Comparison

```
NOTE: Copyright (c) 2002-2003 by SAS Institute Inc., Cary, NC, USA.
```

NOTE: SAS (r) 9.1 (TS1M3)
Licensed to RESEARCH TRIANGLE INSTITUTE, Site 0047670011.
NOTE: This session is executing on the XP_PRO platform.

NOTE: SAS 9.1.3 Service Pack 3
NOTE: SAS initialization used:

real time	1.59 seconds
cpu time	0.28 seconds

```
* Filename: NephInteg.SAS
            Location: \\Rtints23\niddk2\05_Users\Sylvia\DCCT_EDIC\IntegCheck\Neph_JAMA
            Project: NIDDK Data Repository Integrity Checks (0208866.000.001)
            By: Sylvia Tan
            Purpose: Analysis of integrity of EDIC Nephropathy archived dataset in the NIDDK
            ! Data Repository
            Compare results to tables/text/selected figures in paper published by
            DCCT-EDIC Research Group in 2003 (JAMA, [290(16)])
            Last updated: 1/24/07 *;
            options ps=55 ls=75 nonumber formchar='|----|+\---+=|-^<>**' mprint
                10
                    10 ! ;
                    11
                            12 libname niddk "C:\DATA\NIDDK\New-Data\NEPH";
NOTE: Libref NIDDK was successfully assigned as follows:
    Engine: V9
    Physical Name: C:\DATA\NIDDK\New-Data\NEPH
                            * (SAS dataset edicREN8.sas7bdat, same as edicREN8.xpt file:);
1 3
1 4
NOTE: Libref NIDDKX was successfully assigned as follows:
    Engine: XPORT
    Physical Name: C:\DATA\NIDDK\New-Data\NEPH\edicREN8.xpt
            * both datasets were copied on 12/20/2006 from the NIDDK server
                \\Rtints23\niddk2\03_Data_And_Tools\Database\Databases\DCCT-EDIC\EDIC\New-Data
                and are exactly the same, comparison run using SAS Proc Compare, ID=Mask_Pat
            ! edicyear *;
            * proc cimport data=niddk.edicREN8 infile=niddkx; run;
            proc contents position data=niddk.neph_8yr; run;
NOTE: PROCEDURE CONTENTS used (Total process time):
    real time 0.20 seconds
    cpu time 0.01 seconds
```

NOTE: The PROCEDURE CONTENTS printed pages 1-4.
proc format;
value YESNO 0=No 1=Yes;

The SAS System: Baseline Characteristics (Table 1)

SAS Log file for Data read-in and Baseline Characteristics Comparison
NOTE: Format YESNO has been output.
25 value \$GPFMT "EXPERIMENTAL"=Intensive Treatment "STANDARD"=Conventional Treatment;
NOTE: Format \$GPFMT has been output.
26 value \$RETBASF "PRIM"=Primary Prevention "SCND"=Secondary Intervention;
NOTE: Format \$RETBASF has been output.
27 value \$GENDERF "F"=Female "M"=Male;
NOTE: Format \$GENDERF has been output.
28
29 ods rtf file="C:\DATA\NIDDK\Neph\nephinteg_out.rtf" style=sasdocprinter;
NOTE: Writing RTF Body file: C:\DATA\NIDDK\Neph\nephinteg_out.rtf 30
NOTE: PROCEDURE FORMAT used (Total process time):
real time 1.01 seconds
cpu time 0.29 seconds

```

31
32
33
```

data NEPH_8YR; set niddk.neph_8yr;
if group='EXPERIMENTAL' then IntensTx=1;
else if group='STANDARD' then IntensTx=0;

```

NOTE: There were 11745 observations read from the data set NIDDK.NEPH_8YR.
NOTE: The data set WORK.NEPH_8YR has 11745 observations and 54 variables.
NOTE: DATA statement used (Total process time):
real time
0.07 seconds
cpu time
0.01 seconds

34
35
36
37
38
39
40
41
42
43
43
44
44
45
46
47
NOTE: There were 11745 observations read from the data set WORK. NEPH_8YR.
NOTE: The data set WORK. NEPH_8YR has 11745 observations and 54 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.04 seconds
cpu time 0.04 seconds
```

* everything matches * ;

```

Appendix B

\title{
The SAS System: Baseline Characteristics (Table 1)
}

SAS Log file for Data read-in and Baseline Characteristics Comparison

The SAS System
12:57 Monday, February 12,
```

data NEPH_BASE; set neph_8yr;

```
    if edicyear=0;
NOTE: There were 11745 observations read from the data set WORK.NEPH_8YR.
NOTE: The data set WORK.NEPH_BASE has 1349 observations and 54 variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds
proc freq; tables group; run;
NOTE: There were 1349 observations read from the data set WORK.NEPH_BASE.
NOTE: The PROCEDURE FREQ printed page 5.
NOTE: PROCEDURE FREQ used (Total process time):
    real time 0.03 seconds
    cpu time 0.01 seconds

53
54
55
56
57
58
59
NOTE: There were 1349 observations read from the data set WORK.NEPH_BASE.
NOTE: The PROCEDURE MEANS printed pages 6-7.
NOTE: PROCEDURE MEANS used (Total process time):
real time 0.03 seconds
cpu time 0.03 seconds
proc univariate data=neph_base plot normal; class group; var aer; run;

NOTE: Non-portable document will be produced. The current settings of FORMCHAR use non-standard line-drawing characters and the resultant output file will not render correctly unless all readers of the document have the SAS Monospace font installed. To make your document portable, issue the following command:
OPTIONS FORMCHAR="|----|+|---+=|- \<>*";
NOTE: The PROCEDURE UNIVARIATE printed pages 8-14.
NOTE: PROCEDURE UNIVARIATE used (Total process time):
real time 0.10 seconds
cpu time 0.04 seconds
proc npar1way wilcoxon ; class group;
var att_age att_du99 hba1c bmi ldl aer serumcr gfrxb99 stdclr map pulse; run;

\title{
The SAS System: Baseline Characteristics (Table 1)
}

SAS Log file for Data read-in and Baseline Characteristics Comparison
NOTE: There were 1349 observations read from the data set WORK.NEPH_BASE.
NOTE: The PROCEDURE NPAR1WAY printed pages 15-25.
NOTE: PROCEDURE NPAR1WAY used (Total process time):
    real time 0.12 seconds
    cpu time 0.09 seconds
```

 *ods html file="c:\temp\Baseline diab dur ttest.xls" style=minimal;
 proc ttest data=neph_base; class group;
var att_du99; run;

```
NOTE: There were 1349 observations read from the data set WORK.NEPH_BASE.
NOTE: The PROCEDURE TTEST printed page 26.
NOTE: PROCEDURE TTEST used (Total process time):
    real time 0.01 seconds
    cpu time 0.01 seconds
```

 *ods html close; run;
 proc freq data=neph_base;
 tables group*(sex smoke99 close_40 close300 gfrxb70 clr_70 ht f2_ht130)/chisq exact;
 ! run;
    ```
NOTE: There were 1349 observations read from the data set WORK.NEPH_BASE.
NOTE: The PROCEDURE FREQ printed pages 27-36.
NOTE: PROCEDURE FREQ used (Total process time):
    real time 0.09 seconds
    cpu time 0.06 seconds
```

 * results are close to published, except for diabetes duration (ATT_DU99)
 where p-value is 0.15 instead of >0.99)... other slight diffs are noted in text *;
 *ods html close; run;

```

TREATMENT GROUP
\begin{tabular}{lrrrr} 
GROUP & Frequency & Percent & \begin{tabular}{r} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{r} 
Cumulative \\
Percent
\end{tabular} \\
\hline Intensive Treatment & 676 & 50.11 & 676 & 50.11 \\
Conventional Treatment & 673 & 49.89 & 1349 & 100.00 \\
\hline
\end{tabular}

The MEANS Procedure
\begin{tabular}{lcllrr}
\hline & N & & & \\
TREATMENT GROUP & Obs & Variable & Label & Mean & Std Dev \\
\hline Intensive Treatment & 676 & ATT_AGE & Attained age (years) & 33.7240356 & 6.9246283 \\
& & ATT_DU99 & Attained Duration at DCCT Closeout (yr) & 12.2363996 & 4.8914142 \\
& & HBA1C & HbA1c (percent) & 7.3775964 & 1.0846160 \\
& & BMI & Body mass index (kg/m**2) & 26.5429766 & 4.0306340 \\
& & LDL & LDL (mg/dL) & 112.7604167 & 27.0421768 \\
& & AER & Albumin excretion rate (mg/day) & 30.4846498 & 201.0585870 \\
& & SERUMCR & Serum creatinine (mg/dL) & 0.8521545 & 0.1459746 \\
& & GFRXB99 & GFR at DCCT Closeout & 124.7738380 & 20.3328328 \\
& & STDCLR & Standard creatinine clearance & 121.8837556 & 26.1359515 \\
& & MAP & 2/3 DBP + 1/3 SBP & 88.7555887 & 8.7382544 \\
& & PULSE & Pulse (bpm) & 74.5014925 & 9.9695724 \\
& & & & 33.0973054 & 6.9641054 \\
& ATT_AGE & Attained age (years) & 11.8685130 & 4.8504721 \\
& ATT_DU99 & Attained Duration at DCCT Closeout (yr) & 9.1208644 & 1.5547174 \\
& & HBA1C & HbA1c (percent) & 25.0094789 & 3.0395205 \\
& BMI & Body mass index (kg/m**2) & 114.8026906 & 32.0953378 \\
& & LDL & LDL (mg/dL) & 73.3405405 & 440.7897448 \\
& AER & Albumin excretion rate (mg/day) & 0.8428786 & 0.1729174 \\
& & SERUMCR & Serum creatinine (mg/dL) & 126.0559043 & 21.4775395 \\
& & GFRXB99 & GFR at DCCT Closeout & 122.2237237 & 26.3318231 \\
& STDCLR & Standard creatinine clearance & 88.3483258 & 8.8157904 \\
& MAP & 2/3 DBP + 1/3 SBP & 75.2485030 & 10.5841915 \\
\hline
\end{tabular}

The UNIVARIATE Procedure
Variable: AER (Albumin excretion rate (mg/day)) GROUP = Intensive Treatment
\begin{tabular}{lrlr}
\hline \multicolumn{3}{c}{ Moments } & \\
\hline \(\mathbf{N}\) & 671 & Sum Weights & 671 \\
Mean & 30.4846498 & Sum Observations & 20455.2 \\
Std Deviation & 201.058587 & Variance & 40424.5554 \\
Skewness & 19.5255457 & Kurtosis & 436.240541 \\
Uncorrected SS & 27708021.7 & Corrected SS & 27084452.1 \\
Coeff Variation & 659.540419 & Std Error Mean & 7.76178066 \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline \multicolumn{4}{c}{ Basic Statistical Measures } \\
\multicolumn{3}{c}{ Location } & \multicolumn{1}{c}{ Variability } \\
\hline Mean & 30.48465 & Std Deviation & 201.05859 \\
Median & 8.64000 & Variance & 40425 \\
Mode & 5.76000 & Range & 4689 \\
& & Interquartile Range & 8.64000 \\
\hline
\end{tabular}

Tests for Location: Mu0=0
\begin{tabular}{llrll} 
Test & \multicolumn{1}{c}{ Statistic } & \multicolumn{2}{c}{ p Value } \\
\hline Student's t & \(\mathbf{t}\) & 3.927533 & \(\operatorname{Pr}>|\mathbf{t}|\) & \(<.0001\) \\
Sign & \(\mathbf{M}\) & 335.5 & \(\operatorname{Pr}>=|\mathbf{M}|\) & \(<.0001\) \\
Signed Rank & \(\mathbf{S}\) & 112728 & \(\operatorname{Pr}>=|\mathbf{S}|\) & \(<.0001\) \\
\hline
\end{tabular}

Tests for Normality
\begin{tabular}{lllll} 
Test & \multicolumn{2}{c}{ Statistic } & \multicolumn{2}{c}{ p Value } \\
\hline Shapiro-Wilk & W & 0.086328 & Pr \(<\mathbf{W}\) & \(<0.0001\) \\
Kolmogorov-Smirnov & D & 0.442569 & Pr \(>\mathbf{D}\) & \(<0.0100\) \\
Cramer-von Mises & W-Sq & 45.65077 & Pr \(>\) W-Sq & \(<0.0050\) \\
Anderson-Darling & A-Sq & 214.9495 & Pr \(>\) A-Sq & \(<0.0050\) \\
\hline
\end{tabular}

The SAS System: Output for Baseline Characteristics (Table 1)
The UNIVARIATE Procedure
Variable: AER (Albumin excretion rate (mg/day))
GROUP = Intensive Treatment
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Quantiles (Definition 5) } \\
Quantile & Estimate \\
\hline \(\mathbf{1 0 0 \%}\) Max & 4690.08 \\
\(\mathbf{9 9 \%}\) & 439.20 \\
\(\mathbf{9 5 \%}\) & 48.96 \\
\(\mathbf{9 0 \%}\) & 31.68 \\
\(\mathbf{7 5 \%}\) Q3 & 14.40 \\
\(\mathbf{5 0 \%}\) Median & 8.64 \\
\(\mathbf{2 5 \%}\) Q1 & 5.76 \\
\(\mathbf{1 0 \%}\) & 2.88 \\
\(\mathbf{5 \%}\) & 2.88 \\
\(\mathbf{1 \%}\) & 1.44 \\
\(\mathbf{0 \%} \mathbf{~ M i n}\) & 1.44 \\
\hline
\end{tabular}
\begin{tabular}{rrrrr}
\hline \multicolumn{4}{c}{ Extreme Observations } \\
\multicolumn{3}{c}{ Lowest } & \multicolumn{2}{c}{ Highest } \\
Value & Obs & Value & Obs \\
\hline 1.44 & 1345 & 760.32 & 409 \\
1.44 & 1278 & 889.92 & 28 \\
1.44 & 1275 & 1110.24 & 1106 \\
1.44 & 1241 & 1336.32 & 885 \\
1.44 & 1034 & 4690.08 & 253 \\
\hline
\end{tabular}

Missing Values
\begin{tabular}{rrrr} 
& & \multicolumn{2}{c}{ Percent Of } \\
\begin{tabular}{c} 
Missing \\
Value
\end{tabular} & Count & All Obs & \begin{tabular}{r} 
Missing \\
Obs
\end{tabular} \\
\hline. & 5 & 0.74 & 100.00 \\
\hline
\end{tabular}

\title{
The SAS System: Output for Baseline Characteristics (Table 1)
}

The UNIVARIATE Procedure
Variable: AER (Albumin excretion rate (mg/day))
GROUP = Intensive Treatment


\title{
The SAS System: Output for Baseline Characteristics (Table 1)
}

The UNIVARIATE Procedure
Variable: AER (Albumin excretion rate (mg/day))
GROUP = Intensive Treatment


The UNIVARIATE Procedure
Variable: AER (Albumin excretion rate (mg/day)) GROUP = Conventional Treatment
\begin{tabular}{lrlr}
\hline \multicolumn{3}{c}{ Moments } & \\
\hline \(\mathbf{N}\) & 666 & Sum Weights & 666 \\
Mean & 73.3405405 & Sum Observations & 48844.8 \\
Std Deviation & 440.789745 & Variance & 194295.599 \\
Skewness & 13.1320505 & Kurtosis & 206.517009 \\
Uncorrected SS & 132788877 & Corrected SS & 129206573 \\
Coeff Variation & 601.017857 & Std Error Mean & 17.0802557 \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline \multicolumn{4}{c}{ Basic Statistical Measures } \\
\multicolumn{3}{c}{ Location } & \multicolumn{1}{c}{ Variability } \\
\hline Mean & 73.34054 & Std Deviation & 440.78974 \\
Median & 10.08000 & Variance & 194296 \\
Mode & 7.20000 & Range & 8182 \\
& & Interquartile Range & 14.40000 \\
\hline
\end{tabular}

Tests for Location: Mu0=0
\begin{tabular}{llrll} 
Test & \multicolumn{2}{c}{ Statistic } & \multicolumn{2}{c}{ p Value } \\
\hline Student's t & \(\mathbf{t}\) & 4.293878 & \(\operatorname{Pr}>|\mathbf{t}|\) & \(<.0001\) \\
Sign & \(\mathbf{M}\) & 333 & \(\operatorname{Pr}>=|\mathbf{M}|\) & \(<.0001\) \\
Signed Rank & \(\mathbf{S}\) & 111055.5 & \(\operatorname{Pr}>=|\mathbf{S}|\) & \(<.0001\) \\
\hline
\end{tabular}

Tests for Normality
\begin{tabular}{lllll} 
Test & \multicolumn{2}{c}{ Statistic } & \multicolumn{2}{c}{ p Value } \\
\hline Shapiro-Wilk & W & 0.128351 & Pr \(<\mathbf{W}\) & \(<0.0001\) \\
Kolmogorov-Smirnov & D & 0.435213 & Pr \(>\mathbf{D}\) & \(<0.0100\) \\
Cramer-von Mises & W-Sq & 45.00993 & Pr \(>\) W-Sq & \(<0.0050\) \\
Anderson-Darling & A-Sq & 210.9362 & Pr \(>\) A-Sq & \(<0.0050\) \\
\hline
\end{tabular}

The SAS System: Output for Baseline Characteristics (Table 1)
The UNIVARIATE Procedure
Variable: AER (Albumin excretion rate (mg/day))
GROUP = Conventional Treatment
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Quantiles (Definition 5) } \\
Quantile & Estimate \\
\hline \(\mathbf{1 0 0 \%}\) Max & 8183.52 \\
\(\mathbf{9 9 \%}\) & 1360.80 \\
\(\mathbf{9 5 \%}\) & 180.00 \\
\(\mathbf{9 0 \%}\) & 59.04 \\
\(\mathbf{7 5 \%}\) Q3 & 20.16 \\
\(\mathbf{5 0 \%}\) Median & 10.08 \\
\(\mathbf{2 5 \%}\) Q1 & 5.76 \\
\(\mathbf{1 0 \%}\) & 4.32 \\
\(\mathbf{5 \%}\) & 2.88 \\
\(\mathbf{1 \%}\) & 1.44 \\
\(\mathbf{0 \%}\) Min & 1.44 \\
\hline
\end{tabular}
\begin{tabular}{rrrr}
\hline \multicolumn{4}{c}{ Extreme Observations } \\
\multicolumn{2}{c}{ Lowest } & \multicolumn{2}{c}{ Highest } \\
Value & Obs & Value & Obs \\
\hline 1.44 & 1293 & 2060.64 & 13 \\
1.44 & 1261 & 2534.40 & 442 \\
1.44 & 1254 & 3628.80 & 176 \\
1.44 & 1183 & 5126.40 & 14 \\
1.44 & 1110 & 8183.52 & 893 \\
\hline
\end{tabular}

Missing Values

\section*{Percent Of}
\begin{tabular}{rrrr}
\begin{tabular}{c} 
Missing \\
Value
\end{tabular} & Count & All Obs & \begin{tabular}{r} 
Missing \\
Obs
\end{tabular} \\
\hline. & 7 & 1.04 & 100.00 \\
\hline
\end{tabular}

The UNIVARIATE Procedure
Variable: AER (Albumin excretion rate (mg/day)) GROUP = Conventional Treatment


\title{
The SAS System: Output for Baseline Characteristics (Table 1)
}

The UNIVARIATE Procedure

\author{
Variable: AER (Albumin excretion rate (mg/day)) \\ GROUP = Conventional Treatment
}
\begin{tabular}{|c|c|c|c|c|}
\hline -2 & -1 & 0 & +1 & +2 \\
\hline
\end{tabular}

\title{
The SAS System: Output for Baseline Characteristics (Table 1)
}

The NPAR1WAY Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable ATT_AGE Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & \begin{tabular}{l}
Expected \\
Under H0
\end{tabular} & Std Dev Under H0 & Mean Score \\
\hline Intensive Treatment & 674 & 463835.0 & 452591.0 & 7092.28860 & 688.182493 \\
\hline Conventional Treatment & 668 & 437318.0 & 448562.0 & 7092.28860 & 654.667665 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 437318.0000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & -1.5853 \\
\hline One-Sided \(\operatorname{Pr}\) < Z & 0.0564 \\
\hline Two-Sided Pr > \(\mathrm{Z} \mid\) & 0.1129 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided \(\operatorname{Pr}\) < Z & 0.0566 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathrm{Z}|\) & 0.1131 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5 .} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 2.5134 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.1129 \\
\hline
\end{tabular}

\title{
The SAS System: Output for Baseline Characteristics (Table 1)
}

The NPAR1WAY Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable ATT_DU99 Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & Expected Under H0 & Std Dev Under H0 & Mean Score \\
\hline Intensive Treatment & 674 & 462791.50 & 452591.0 & 7098.31947 & 686.634273 \\
\hline Conventional Treatment & 668 & 438361.50 & 448562.0 & 7098.31947 & 656.229790 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 438361.5000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & -1.4370 \\
\hline One-Sided \(\operatorname{Pr}\) < Z & 0.0754 \\
\hline Two-Sided Pr > \(\mathrm{Z} \mid\) & 0.1507 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr < Z & 0.0755 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.1510 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 2.0651 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.1507 \\
\hline
\end{tabular}

The NPAR1WAY Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable HBA1C Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & Expected Under H0 & Std Dev Under H0 & Mean Score \\
\hline Intensive Treatment & 674 & 302322.0 & 453602.0 & 7120.70245 & 448.548961 \\
\hline Conventional Treatment & 671 & 602863.0 & 451583.0 & 7120.70245 & 898.454545 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 602863.0000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 21.2450 \\
\hline One-Sided \(\operatorname{Pr}>\mathbf{Z}\) & <. 0001 \\
\hline Two-Sided Pr > \(\mathrm{Z} \mid\) & <. 0001 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & <. 0001 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & <. 0001 \\
\hline \multicolumn{2}{|l|}{\(Z\) includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 451.3541 \\
DF & 1 \\
Pr \(>\) Chi-Square & \(<.0001\) \\
\hline
\end{tabular}

\section*{The SAS System: Output for Baseline Characteristics (Table 1)}

The NPAR1WAY Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable BMI Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & Expected Under H0 & Std Dev Under H0 & Mean Score \\
\hline Intensive Treatment & 657 & 475863.50 & 430992.0 & 6854.05909 & 724.297565 \\
\hline Conventional Treatment & 654 & 384152.50 & 429024.0 & 6854.05909 & 587.389144 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 384152.5000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & -6.5466 \\
\hline One-Sided \(\operatorname{Pr}\) < Z & <. 0001 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & <. 0001 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr < Z & <. 0001 \\
\hline Two-Sided Pr > \(\mathrm{Z} \mid\) & <. 0001 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 42.8593 \\
DF & 1 \\
Pr \(>\) Chi-Square & \(<.0001\) \\
\hline
\end{tabular}

The NPAR1WAY Procedure
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{\begin{tabular}{l} 
Wilcoxon Scores (Rank Sums) for Variable LDL \\
Classified by Variable GROUP
\end{tabular}} & \\
GROUP & & \begin{tabular}{r} 
Sum of \\
Scores
\end{tabular} & \begin{tabular}{rlrrr} 
Expected \\
Under H0
\end{tabular} & \begin{tabular}{c} 
Std Dev \\
Under H0
\end{tabular} & \begin{tabular}{r} 
Mean \\
Score
\end{tabular} \\
\hline Intensive Treatment & 672 & 444801.0 & 450912.0 & 7090.12196 & 661.906250 \\
Conventional Treatment & 669 & 455010.0 & 448899.0 & 7090.12196 & 680.134529 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 455010.0000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 0.8618 \\
\hline One-Sided Pr > Z & 0.1944 \\
\hline Two-Sided Pr \(>\) | \(\mathbf{Z} \mid\) & 0.3888 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & 0.1945 \\
\hline Two-Sided Pr \(>\) | \(\mathrm{Z} \mid\) & 0.3889 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 0.7429 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.3887 \\
\hline
\end{tabular}

The NPAR1WAY Procedure
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{\begin{tabular}{l} 
Wilcoxon Scores (Rank Sums) for Variable AER \\
Classified by Variable GROUP
\end{tabular}} \\
& & Sum of & Expected & Std Dev & Mean \\
GROUP & N & Scores & Under H0 & Under H0 & Score \\
\hline Intensive Treatment & 671 & 419629.0 & 448899.0 & 7040.84248 & 625.378539 \\
Conventional Treatment & 666 & 474824.0 & 445554.0 & 7040.84248 & 712.948949 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 474824.0000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 4.1571 \\
\hline One-Sided Pr > Z & <. 0001 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathrm{Z}|\) & <. 0001 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & <. 0001 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & <. 0001 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5 .} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 17.2821 \\
DF & 1 \\
Pr \(>\) Chi-Square & \(<.0001\) \\
\hline
\end{tabular}

The NPAR1WAY Procedure
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{ Wilcoxon Scores (Rank Sums) for Variable SERUMCR } \\
Classified by Variable GROUP \\
GROUP & & N & \begin{tabular}{rlrrrr} 
\\
Sum of & Scores
\end{tabular} & \begin{tabular}{l} 
Expected \\
Under H0
\end{tabular} & \begin{tabular}{rl} 
Std Dev \\
Under H0
\end{tabular} & \begin{tabular}{r} 
Mean \\
Score
\end{tabular} \\
\hline Intensive Treatment & 673 & 462030.50 & 451246.50 & 6940.25103 & 686.523774 \\
Conventional Treatment & 667 & 436439.50 & 447223.50 & 6940.25103 & 654.332084 \\
\hline \multicolumn{6}{c}{ Average scores were used for ties. } \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 436439.5000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & -1.5538 \\
\hline One-Sided Pr < Z & 0.0601 \\
\hline Two-Sided Pr > \(\mathrm{Z} \mid\) & 0.1202 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided \(\operatorname{Pr}\) < Z & 0.0602 \\
\hline Two-Sided Pr > \(\mathrm{Z} \mid\) & 0.1205 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5 .} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 2.4144 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.1202 \\
\hline
\end{tabular}

The SAS System: Output for Baseline Characteristics (Table 1)
The NPAR1WAY Procedure
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{\begin{tabular}{l} 
Wilcoxon Scores (Rank Sums) for Variable GFRXB99 \\
Classified by Variable GROUP
\end{tabular}} \\
& & N & \begin{tabular}{r} 
Sum of \\
Scores
\end{tabular} & \begin{tabular}{rlrrr} 
Expected \\
Under H0
\end{tabular} & \begin{tabular}{rl} 
Std Dev \\
Under H0
\end{tabular} & \begin{tabular}{r} 
Mean \\
Score
\end{tabular} \\
\hline GROUP & 542 & 278005.0 & 283466.0 & 4874.82304 & 512.924354 \\
Intensive Treatment & 503 & 268530.0 & 263069.0 & 4874.82304 & 533.856859 \\
\hline Conventional Treatment & & & & &
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 268530.0000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 1.1201 \\
\hline One-Sided Pr > Z & 0.1313 \\
\hline Two-Sided Pr > \(\mathbf{Z} \mid\) & 0.2627 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & 0.1315 \\
\hline Two-Sided Pr > \(\mathbf{Z} \mid\) & 0.2629 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 1.2550 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.2626 \\
\hline
\end{tabular}

\section*{The SAS System: Output for Baseline Characteristics (Table 1)}

The NPAR1WAY Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable STDCLR Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & Expected Under H0 & Std Dev Under H0 & Mean Score \\
\hline Intensive Treatment & 671 & 444884.50 & 448899.0 & 7058.10409 & 663.017139 \\
\hline Conventional Treatment & 666 & 449568.50 & 445554.0 & 7058.10409 & 675.027778 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 449568.5000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 0.5687 \\
\hline One-Sided Pr > Z & 0.2848 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.5696 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & 0.2848 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.5696 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5 .} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 0.3235 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.5695 \\
\hline
\end{tabular}

The NPAR1WAY Procedure
\begin{tabular}{lrrrrrrr}
\hline \multicolumn{6}{c}{\begin{tabular}{l} 
Wilcoxon Scores (Rank Sums) for Variable MAP \\
Classified by Variable GROUP
\end{tabular}} \\
GROUP & & N & Sum of & Expected & Std Dev & Mean \\
Scores & Under H0 & Under H0 & Score \\
\hline Intensive Treatment & 671 & 457159.50 & 449234.50 & 7064.74325 & 681.310730 \\
Conventional Treatment & 667 & 438631.50 & 446556.50 & 7064.74325 & 657.618441 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 438631.5000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & -1.1217 \\
\hline One-Sided \(\operatorname{Pr}\) < Z & 0.1310 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathrm{Z}|\) & 0.2620 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr < Z & 0.1311 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathrm{Z}|\) & 0.2622 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 1.2584 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.2620 \\
\hline
\end{tabular}

The NPAR1WAY Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable PULSE Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & Expected Under H0 & Std Dev Under H0 & Mean Score \\
\hline Intensive Treatment & 670 & 439362.50 & 448565.0 & 7036.14944 & 655.764925 \\
\hline Conventional Treatment & 668 & 456428.50 & 447226.0 & 7036.14944 & 683.276198 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 456428.5000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 1.3078 \\
\hline One-Sided Pr > Z & 0.0955 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.1909 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & 0.0956 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathrm{Z}|\) & 0.1912 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5 .} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 1.7106 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.1909 \\
\hline
\end{tabular}

The TTEST Procedure


Equality of Variances
\begin{tabular}{llrrrr} 
Variable & Method & Num DF & Den DF & F Value & Pr \(>\) F \\
\hline ATT_DU99 & Folded F & 673 & 667 & 1.02 & 0.8279 \\
\hline
\end{tabular}

The FREQ Procedure

Table of GROUP by SEX
GROUP(TREATMENT
GROUP)
SEX(Gender)
\begin{tabular}{lrrr}
\begin{tabular}{l} 
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & & & \\
\hline \multicolumn{1}{c}{ Intensive Treatment } & 330 & 346 & 676 \\
& Female & Male & Total \\
& 24.46 & 25.65 & 50.11 \\
& 48.82 & 51.18 & \\
Conventional Treatment & 31.32 & 49.01 & \\
& 33.20 & 360 & 673 \\
& 46.51 & 53.49 & 49.89 \\
& 48.68 & 50.99 & \\
Total & 643 & 706 & 1349 \\
& 47.66 & 52.34 & 100.00 \\
\hline
\end{tabular}

Statistics for Table of GROUP by SEX
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.7204 & 0.3960 \\
Likelihood Ratio Chi-Square & 1 & 0.7205 & 0.3960 \\
Continuity Adj. Chi-Square & 1 & 0.6308 & 0.4270 \\
Mantel-Haenszel Chi-Square & 1 & 0.7199 & 0.3962 \\
Phi Coefficient & & 0.0231 & \\
Contingency Coefficient & & 0.0231 & \\
Cramer's V & 0.0231 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 330 \\
Left-sided \(\operatorname{Pr}<=\mathbf{F}\) & 0.8168 \\
Right-sided Pr >= F & 0.2135 \\
& \\
Table Probability (P) & 0.0303 \\
Two-sided \(\operatorname{Pr}<=\mathbf{P}\) & 0.4137 \\
\hline
\end{tabular}

The FREQ Procedure
\begin{tabular}{lrrr}
\hline \multicolumn{3}{c}{ Table of GROUP by SMOKE99 } \\
GROUP(TREATMENT \\
GROUP)
\end{tabular}\(\left.\quad \begin{array}{c}\text { SMOKE99(Smoking } \\
\text { DCCT Closeout) }\end{array}\right)\)

Statistics for Table of GROUP by SMOKE99
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.3735 & 0.5411 \\
Likelihood Ratio Chi-Square & 1 & 0.3736 & 0.5411 \\
Continuity Adj. Chi-Square & 1 & 0.2978 & 0.5853 \\
Mantel-Haenszel Chi-Square & 1 & 0.3733 & 0.5412 \\
Phi Coefficient & & -0.0167 & \\
Contingency Coefficient & & 0.0167 & \\
Cramer's V & -0.0167 & \\
\hline
\end{tabular}

The FREQ Procedure
Statistics for Table of GROUP by SMOKE99
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 519 \\
Left-sided \(\operatorname{Pr}<=\) F & 0.2927 \\
Right-sided Pr >= F & 0.7507 \\
& \\
Table Probability (P) & 0.0433 \\
Two-sided Pr \(<=\mathbf{P}\) & 0.5559 \\
\hline
\end{tabular}
\[
\begin{gathered}
\text { Effective Sample Size }=1345 \\
\text { Frequency Missing }=4
\end{gathered}
\]
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Table of GROUP by CLOSE_40} \\
\hline GROUP(TREATMENT GROUP) & \multicolumn{3}{|l|}{CLOSE_40(AER > 40 at DCCT close-out)} \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & No & Yes & Total \\
\hline \multirow[t]{4}{*}{Intensive Treatment} & 626 & 50 & 676 \\
\hline & 46.40 & 3.71 & 50.11 \\
\hline & 92.60 & 7.40 & \\
\hline & 51.65 & 36.50 & \\
\hline \multirow[t]{4}{*}{Conventional Treatment} & 586 & 87 & 673 \\
\hline & 43.44 & 6.45 & 49.89 \\
\hline & 87.07 & 12.93 & \\
\hline & 48.35 & 63.50 & \\
\hline \multirow[t]{2}{*}{Total} & 1212 & 137 & 1349 \\
\hline & 89.84 & 10.16 & 100.00 \\
\hline
\end{tabular}

Statistics for Table of GROUP by CLOSE_40
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 11.3062 & 0.0008 \\
Likelihood Ratio Chi-Square & 1 & 11.4316 & 0.0007 \\
Continuity Adj. Chi-Square & 1 & 10.7082 & 0.0011 \\
Mantel-Haenszel Chi-Square & 1 & 11.2978 & 0.0008 \\
Phi Coefficient & & 0.0915 &
\end{tabular}

The FREQ Procedure
Statistics for Table of GROUP by CLOSE_40
\begin{tabular}{lccc}
\hline Statistic & DF & Value & Prob \\
\hline Contingency Coefficient & & 0.0912 & \\
Cramer's V & & 0.0915 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 626 \\
Left-sided Pr <= F & 0.9997 \\
Right-sided Pr >= F & \(5.048 \mathrm{E}-04\) \\
& \\
Table Probability (P) & \(2.456 \mathrm{E}-04\) \\
Two-sided \(\operatorname{Pr}<=\mathbf{P}\) & \(8.221 \mathrm{E}-04\) \\
\hline
\end{tabular}

Sample Size \(=1349\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Table of GROUP by CLOSE300} \\
\hline GROUP(TREATMENT GROUP) & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { CLOSE300(AER > } 300 \\
& \text { at DCCT close-out) }
\end{aligned}
\]} \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & No & Yes & Total \\
\hline \multirow[t]{4}{*}{Intensive Treatment} & 666 & 10 & 676 \\
\hline & 49.37 & 0.74 & 50.11 \\
\hline & 98.52 & 1.48 & \\
\hline & 50.49 & 33.33 & \\
\hline \multirow[t]{4}{*}{Conventional Treatment} & 653 & 20 & 673 \\
\hline & 48.41 & 1.48 & 49.89 \\
\hline & 97.03 & 2.97 & \\
\hline & 49.51 & 66.67 & \\
\hline \multirow[t]{2}{*}{Total} & 1319 & 30 & 1349 \\
\hline & 97.78 & 2.22 & 100.00 \\
\hline
\end{tabular}

\section*{Statistics for Table of GROUP by CLOSE300}

The SAS System: Output for Baseline Characteristics (Table 1)
The FREQ Procedure
Statistics for Table of GROUP by CLOSE300
\begin{tabular}{lrrc}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 3.4548 & 0.0631 \\
Likelihood Ratio Chi-Square & 1 & 3.5194 & 0.0607 \\
Continuity Adj. Chi-Square & 1 & 2.8025 & 0.0941 \\
Mantel-Haenszel Chi-Square & 1 & 3.4522 & 0.0632 \\
Phi Coefficient & & 0.0506 & \\
Contingency Coefficient & & 0.0505 & \\
Cramer's V & & 0.0506 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 666 \\
Left-sided Pr <= F & 0.9803 \\
Right-sided Pr >= F & 0.0463 \\
& \\
Table Probability (P) & 0.0266 \\
Two-sided Pr <= P & 0.0672 \\
\hline
\end{tabular}

Sample Size = 1349

The FREQ Procedure
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Table of GROUP by GFRXB70} \\
\hline GROUP(TREATMENT GROUP) & GFRXB70 DCCT & & \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & No & Yes & Total \\
\hline Intensive Treatment & \[
\begin{array}{r}
540 \\
51.67 \\
99.63 \\
51.92
\end{array}
\] & \[
\begin{array}{r}
2 \\
0.19 \\
0.37 \\
40.00
\end{array}
\] & \[
\begin{array}{r}
542 \\
51.87
\end{array}
\] \\
\hline Conventional Treatment & \[
\begin{array}{r}
500 \\
47.85 \\
99.40 \\
48.08
\end{array}
\] & \[
\begin{array}{r}
3 \\
0.29 \\
0.60 \\
60.00
\end{array}
\] & \[
\begin{array}{r}
503 \\
48.13
\end{array}
\] \\
\hline Total & \[
\begin{array}{r}
1040 \\
99.52
\end{array}
\] & 5
0.48 & \[
\begin{array}{r}
1045 \\
100.00
\end{array}
\] \\
\hline \multicolumn{4}{|c|}{Frequency Missing \(\mathbf{= 3 0 4}\)} \\
\hline
\end{tabular}

\section*{Statistics for Table of GROUP by GFRXB70}
\begin{tabular}{lccc}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.2834 & 0.5945 \\
Likelihood Ratio Chi-Square & 1 & 0.2844 & 0.5939 \\
Continuity Adj. Chi-Square & 1 & 0.0070 & 0.9333 \\
Mantel-Haenszel Chi-Square & 1 & 0.2831 & 0.5947 \\
Phi Coefficient & & 0.0165 & \\
Contingency Coefficient & & 0.0165 & \\
Cramer's V & 0.0165 & \\
\hline
\end{tabular}

WARNING: 50\% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

The FREQ Procedure
Statistics for Table of GROUP by GFRXB70
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 540 \\
Left-sided \(\operatorname{Pr}<=\mathbf{F}\) & 0.8356 \\
Right-sided \(\operatorname{Pr}>=\mathbf{F}\) & 0.4650 \\
& \\
Table Probability (P) & 0.3005 \\
Two-sided \(\operatorname{Pr}<=\mathbf{P}\) & 0.6761 \\
\hline
\end{tabular}

> Effective Sample Size = 1045
> Frequency Missing = 304

WARNING: 23\% of the data are missing.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Table of GROUP by CLR_70} \\
\hline GROUP(TREATMENT GROUP) & \[
\begin{gathered}
\text { CLR_70(s } \\
\text { clearans }
\end{gathered}
\] & \begin{tabular}{l}
dard \\
70)
\end{tabular} & \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & No & Yes & Total \\
\hline Intensive Treatment & \[
\begin{array}{r}
661 \\
49.44 \\
98.51 \\
50.19
\end{array}
\] & \[
\begin{array}{r}
10 \\
0.75 \\
1.49 \\
50.00
\end{array}
\] & \[
\begin{array}{r}
671 \\
50.19
\end{array}
\] \\
\hline Conventional Treatment & \[
\begin{array}{r}
656 \\
49.07 \\
98.50 \\
49.81
\end{array}
\] & \[
\begin{array}{r}
10 \\
0.75 \\
1.50 \\
50.00
\end{array}
\] & \[
\begin{array}{r}
666 \\
49.81
\end{array}
\] \\
\hline Total & \[
\begin{aligned}
& 1317 \\
& 98.50
\end{aligned}
\] & 20
1.50 & \[
\begin{array}{r}
1337 \\
100.00
\end{array}
\] \\
\hline \multicolumn{4}{|c|}{Frequency Missing \(=12\)} \\
\hline
\end{tabular}

Statistics for Table of GROUP by CLR_70

The SAS System: Output for Baseline Characteristics (Table 1)
The FREQ Procedure
Statistics for Table of GROUP by CLR_70
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.0003 & 0.9866 \\
Likelihood Ratio Chi-Square & 1 & 0.0003 & 0.9866 \\
Continuity Adj. Chi-Square & 1 & 0.0000 & 1.0000 \\
Mantel-Haenszel Chi-Square & 1 & 0.0003 & 0.9866 \\
Phi Coefficient & & 0.0005 & \\
Contingency Coefficient & & 0.0005 & \\
Cramer's V & 0.0005 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 661 \\
Left-sided Pr <= F & 0.5954 \\
Right-sided Pr >= F & 0.5821 \\
& \\
Table Probability (P) & 0.1775 \\
Two-sided Pr <= P & 1.0000 \\
\hline \multicolumn{2}{l}{ Effective Sample Size = \(\mathbf{1 3 3 7}\)} \\
\multicolumn{2}{c}{ Frequency Missing = }
\end{tabular}

\title{
The SAS System
}

\section*{The FREQ Procedure}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Table of GROUP by HT} \\
\hline GROUP(TREATMENT GROUP) & \multicolumn{2}{|l|}{HT(Current Hypertension (>=140/90))} & \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & No & Yes & Total \\
\hline \multirow[t]{4}{*}{Intensive Treatment} & 602 & 74 & 676 \\
\hline & 44.63 & 5.49 & 50.11 \\
\hline & 89.05 & 10.95 & \\
\hline & 50.00 & 51.03 & \\
\hline \multirow[t]{4}{*}{Conventional Treatment} & 602 & 71 & 673 \\
\hline & 44.63 & 5.26 & 49.89 \\
\hline & 89.45 & 10.55 & \\
\hline & 50.00 & 48.97 & \\
\hline \multirow[t]{2}{*}{Total} & 1204 & 145 & 1349 \\
\hline & 89.25 & 10.75 & 100.00 \\
\hline
\end{tabular}

\section*{Statistics for Table of GROUP by HT}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.0554 & 0.8139 \\
Likelihood Ratio Chi-Square & 1 & 0.0554 & 0.8139 \\
Continuity Adj. Chi-Square & 1 & 0.0217 & 0.8828 \\
Mantel-Haenszel Chi-Square & 1 & 0.0554 & 0.8140 \\
Phi Coefficient & & -0.0064 & \\
Contingency Coefficient & & 0.0064 & \\
Cramer's V & & -0.0064 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 602 \\
Left-sided Pr <= F & 0.4414 \\
Right-sided Pr >= F & 0.6267 \\
& \\
Table Probability (P) & 0.0681 \\
Two-sided Pr <= P & 0.8606 \\
\hline
\end{tabular}

The FREQ Procedure

\section*{Statistics for Table of GROUP by HT}

Sample Size \(=1349\)

Table of GROUP by F2_HT130
\begin{tabular}{cc} 
GROUP(TREATMENT & F2_HT130(Hypertension \\
GROUP) & \(>=130 / 80)\)
\end{tabular}
\begin{tabular}{lrrr}
\begin{tabular}{l} 
Frequency \\
Percent \\
Row Pct
\end{tabular} & & & \\
Col Pct & No & Yes & Total \\
\hline \multicolumn{1}{c}{ Intensive Treatment } & 411 & 260 & 671 \\
& 30.72 & 19.43 & 50.15 \\
& 61.25 & 38.75 & \\
& 49.16 & 51.79 & \\
Conventional Treatment & 425 & 242 & 667 \\
& 31.76 & 18.09 & 49.85 \\
& 63.72 & 36.28 & \\
& 50.84 & 48.21 & \\
Total & 836 & 502 & 1338 \\
& 62.48 & 37.52 & 100.00
\end{tabular}

Frequency Missing \(=11\)

\section*{Statistics for Table of GROUP by F2_HT130}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.8679 & 0.3515 \\
Likelihood Ratio Chi-Square & 1 & 0.8681 & 0.3515 \\
Continuity Adj. Chi-Square & 1 & 0.7659 & 0.3815 \\
Mantel-Haenszel Chi-Square & 1 & 0.8673 & 0.3517 \\
Phi Coefficient & & -0.0255 & \\
Contingency Coefficient & & 0.0255 & \\
Cramer's V & -0.0255 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 411 \\
Left-sided \(\operatorname{Pr}<=\mathbf{F}\) & 0.1907 \\
Right-sided Pr >= F & 0.8384 \\
& \\
Table Probability (P) & 0.0292 \\
Two-sided Pr <= P & 0.3665 \\
\hline \multicolumn{2}{l}{ Effective Sample Size = \(\mathbf{1 3 3 8}\)} \\
\multicolumn{2}{l}{ Frequency Missing \(=\mathbf{1 1}\)}
\end{tabular}

\section*{APPENDIX C}

SAS 9.1 Code and Output for Replication of Selected Analyses in Results: \(\mathrm{HbA}_{1 c}\) Level and in Figure 1:
Distribution of \(\mathrm{HbA}_{1 \mathrm{c}}\) Concentration by Randomized Treatment Group at the End of the DCCT and in Each Year of the EDIC Study, from EDIC Nephropathy Dataset in NIDDK Repository

\title{
The SAS System: HbA1c analyses - SAS log file
}

08:20 Wednesday, February 14, 2007

72
73
74
75
76
77
78
**************;
* HbA1c Level *;
***************;
    ** Figure 1 and next-to-last sentence pg.2161 **;
proc sort data=neph_8yr; by edicyear;

NOTE: There were 11745 observations read from the data set WORK.NEPH_8YR.
NOTE: The data set WORK. NEPH_8YR has 11745 observations and 54 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.04 seconds
cpu time 0.03 seconds

79
proc univariate data=neph_8yr noprint; by edicyear; var hba1c; class group; output out=hbameans mean=meanhba0meanhba8 81 median=medhba0-medhba8 q1=q1hba0-q1hba8 q3=q3hba0-q3hba8 p5=p5hba0-p5hba8
82 p95=p95hba0-p95hba8; run;
NOTE: The data set WORK. HBAMEANS has 18 observations and 8 variables. NOTE: PROCEDURE UNIVARIATE used (Total process time):

\title{
The SAS System: HbA1c analyses - SAS log file
}

The SAS
08:20 Wednesday, February 14, 2007


\title{
The SAS System: HbA1c analyses - SAS log file
}
```

The SAS 08:20 Wednesday, February 14, 2007
14:46 Friday, February 9, 2007
95
proc npar1way wilcoxon data=meanhba; class group; var meanhba;
run;
NOTE: There were 2701 observations read from the data set WORK.MEANHBA.
NOTE: The PROCEDURE NPAR1WAY printed page 52.
NOTE: PROCEDURE NPAR1WAY used (Total process time):
real time 0.01 seconds cpu time 0.01 seconds
96
** very close to published **;
97

```

The SAS System: Output for HbA1c analyses Mean and Median Hba1c at each year of EDIC (Compare to Figure 1, p. 2162 JAMA)
\begin{tabular}{rrrrrrrrr}
\hline Obs & EDICYEAR & \multicolumn{1}{c}{ GROUP } & meanhba0 & p95hba0 & q3hba0 & medhba0 & q1hba0 & p5hba0 \\
\hline \(\mathbf{1}\) & 00 & Intensive Treatment & 7.37760 & 9.30 & 7.9 & 7.25 & 6.7 & 6.0 \\
\(\mathbf{2}\) & 00 & Conventional Treatment & 9.12086 & 11.70 & 10.1 & 9.10 & 8.1 & 6.6 \\
\(\mathbf{3}\) & 01 & Intensive Treatment & 7.88563 & 10.20 & 8.5 & 7.70 & 6.9 & 6.2 \\
\(\mathbf{4}\) & 01 & Conventional Treatment & 8.28279 & 10.70 & 9.0 & 8.10 & 7.3 & 6.4 \\
\(\mathbf{5}\) & 02 & Intensive Treatment & 8.06615 & 10.40 & 8.7 & 7.90 & 7.2 & 6.3 \\
\(\mathbf{6}\) & 02 & Conventional Treatment & 8.36677 & 10.90 & 9.2 & 8.10 & 7.4 & 6.5 \\
\(\mathbf{7}\) & 03 & Intensive Treatment & 8.20109 & 10.80 & 9.0 & 7.90 & 7.3 & 6.4 \\
\(\mathbf{8}\) & 03 & Conventional Treatment & 8.39766 & 11.00 & 9.2 & 8.25 & 7.4 & 6.4 \\
\(\mathbf{9}\) & 04 & Intensive Treatment & 8.12703 & 10.90 & 8.8 & 7.90 & 7.2 & 6.3 \\
\(\mathbf{1 0}\) & 04 & Conventional Treatment & 8.23818 & 10.80 & 9.0 & 8.00 & 7.3 & 6.3 \\
\(\mathbf{1 1}\) & 05 & Intensive Treatment & 8.10859 & 10.95 & 8.9 & 7.90 & 7.1 & 6.2 \\
\(\mathbf{1 2}\) & 05 & Conventional Treatment & 8.20548 & 10.70 & 9.0 & 8.00 & 7.3 & 6.3 \\
\(\mathbf{1 3}\) & 06 & Intensive Treatment & 8.00964 & 10.30 & 8.8 & 7.80 & 7.1 & 6.0 \\
\(\mathbf{1 4}\) & 06 & Conventional Treatment & 8.15917 & 10.50 & 9.0 & 8.00 & 7.2 & 6.2 \\
\(\mathbf{1 5}\) & 07 & Intensive Treatment & 7.92374 & 10.20 & 8.6 & 7.70 & 7.1 & 6.1 \\
\(\mathbf{1 6}\) & 07 & Conventional Treatment & 7.98622 & 10.50 & 8.8 & 7.80 & 7.0 & 5.9 \\
\(\mathbf{1 7}\) & 08 & Intensive Treatment & 7.98137 & 10.50 & 8.7 & 7.80 & 7.0 & 6.1 \\
\(\mathbf{1 8}\) & 08 & Conventional Treatment & 7.93783 & 10.40 & 8.7 & 7.90 & 6.9 & 5.9 \\
\hline
\end{tabular}

Appendix C

The SAS System: Output for HbA1c analyses
The MEANS Procedure
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Analysis Variable : HBA1C HbA1c (percent)} \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { EDIC } \\
\text { FOLLOWUP } \\
\text { YEAR }
\end{array}
\]} & & & \\
\hline & TREATMENT GROUP & N Obs & Mean \\
\hline 0 & Intensive Treatment & 676 & 7.3775964 \\
\hline & Conventional Treatment & 673 & 9.1208644 \\
\hline 1 & Intensive Treatment & 652 & 7.8856260 \\
\hline & Conventional Treatment & 648 & 8.2827907 \\
\hline 2 & Intensive Treatment & 651 & 8.0661515 \\
\hline & Conventional Treatment & 647 & 8.3667707 \\
\hline 3 & Intensive Treatment & 651 & 8.2010853 \\
\hline & Conventional Treatment & 652 & 8.3976636 \\
\hline 4 & Intensive Treatment & 646 & 8.1270312 \\
\hline & Conventional Treatment & 645 & 8.2381847 \\
\hline 5 & Intensive Treatment & 647 & 8.1085937 \\
\hline & Conventional Treatment & 646 & 8.2054773 \\
\hline 6 & Intensive Treatment & 653 & 8.0096423 \\
\hline & Conventional Treatment & 654 & 8.1591680 \\
\hline 7 & Intensive Treatment & 653 & 7.9237366 \\
\hline & Conventional Treatment & 652 & 7.9862229 \\
\hline 8 & Intensive Treatment & 652 & 7.9813665 \\
\hline & Conventional Treatment & 647 & 7.9378336 \\
\hline
\end{tabular}

The SAS System: Output for HbA1c analyses
Compare to P-values for Figure 1 (group differences in Hba1c levels at each year of EDIC) The NPAR1WAY Procedure

EDIC FOLLOWUP YEAR=00
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable HBA1C Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & \begin{tabular}{l}
Expected \\
Under H0
\end{tabular} & \[
\begin{array}{r}
\text { Std Dev } \\
\text { Under H0 }
\end{array}
\] & Mean Score \\
\hline Intensive Treatment & 674 & 302322.0 & 453602.0 & 7120.70245 & 448.548961 \\
\hline Conventional Treatment & 671 & 602863.0 & 451583.0 & 7120.70245 & 898.454545 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 602863.0000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 21.2450 \\
\hline One-Sided Pr > Z & <. 0001 \\
\hline Two-Sided Pr > \(\mathbf{Z} \mid\) & <. 0001 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & <. 0001 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & <. 0001 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 451.3541 \\
DF & 1 \\
Pr \(>\) Chi-Square & \(<.0001\) \\
\hline
\end{tabular}

The SAS System: Output for HbA1c analyses
Compare to P-values for Figure 1 (group differences in Hba1c levels at each year of EDIC) The NPAR1WAY Procedure

EDIC FOLLOWUP YEAR=01
\begin{tabular}{lrrrrrrr}
\hline \multicolumn{6}{c}{\begin{tabular}{l} 
Wilcoxon Scores (Rank Sums) for Variable HBA1C \\
Classified by Variable GROUP
\end{tabular}} \\
GROUP & N & \begin{tabular}{r} 
Sum of \\
Scores
\end{tabular} & \begin{tabular}{c} 
Expected \\
Under H0
\end{tabular} & \begin{tabular}{rl} 
Std Dev \\
Under H0
\end{tabular} & \begin{tabular}{r} 
Mean \\
Score
\end{tabular} \\
\hline Intensive Treatment & 647 & 378872.50 & 418285.50 & 6703.24767 & 585.583462 \\
Conventional Treatment & 645 & 456405.50 & 416992.50 & 6703.24767 & 707.605426 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 456405.5000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 5.8796 \\
\hline One-Sided Pr > Z & <. 0001 \\
\hline Two-Sided Pr > \(\mathrm{Z} \mid\) & <. 0001 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & <. 0001 \\
\hline Two-Sided Pr > \(\mathrm{Z} \mid\) & <. 0001 \\
\hline \multicolumn{2}{|l|}{\(Z\) includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 34.5707 \\
DF & 1 \\
Pr \(>\) Chi-Square & \(<.0001\) \\
\hline
\end{tabular}

The SAS System: Output for HbA1c analyses
Compare to P-values for Figure 1 (group differences in Hba1c levels at each year of EDIC) The NPAR1WAY Procedure

EDIC FOLLOWUP YEAR=02
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable HBA1C Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & \begin{tabular}{l}
Expected \\
Under H0
\end{tabular} & \[
\begin{array}{r}
\text { Std Dev } \\
\text { Under H0 }
\end{array}
\] & Mean Score \\
\hline Intensive Treatment & 647 & 389220.0 & 416991.50 & 6672.21233 & 601.576507 \\
\hline Conventional Treatment & 641 & 440896.0 & 413124.50 & 6672.21233 & 687.825273 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Wilcoxon Two-Sample Test } \\
\hline Statistic & 440896.0000 \\
& \\
Normal Approximation & \\
Z & 4.1622 \\
One-Sided Pr \(>\mathrm{Z}\) & \(<.0001\) \\
Two-Sided Pr \(>|\mathrm{Z}|\) & \(<.0001\) \\
& \\
t Approximation & \(<.0001\) \\
One-Sided Pr \(>\mathrm{Z}\) & \(<.0001\) \\
\multicolumn{2}{c}{ Two-Sided Pr \(>|\mathrm{Z}|\)}
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 17.3244 \\
DF & 1 \\
Pr \(>\) Chi-Square & \(<.0001\) \\
\hline
\end{tabular}

The SAS System: Output for HbA1c analyses
Compare to P-values for Figure 1 (group differences in Hba1c levels at each year of EDIC) The NPAR1WAY Procedure

EDIC FOLLOWUP YEAR=03
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{ Wilcoxon Scores (Rank Sums) for Variable HBA1C } \\
Classified by Variable GROUP \\
GROUP & & Sum of & Expected & Std Dev & Mean \\
Scores & Under H0 & Under H0 & Score \\
\hline Intensive Treatment & 645 & 394568.0 & 415380.0 & 6664.61982 & 611.733333 \\
Conventional Treatment & 642 & 434260.0 & 413448.0 & 6664.61982 & 676.417445 \\
\hline \multicolumn{6}{c}{ Average scores were used for ties. } \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 434260.0000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 3.1227 \\
\hline One-Sided Pr > Z & 0.0009 \\
\hline Two-Sided Pr > \(\mathrm{Z} \mid\) & 0.0018 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & 0.0009 \\
\hline Two-Sided Pr \(>\) | \(\mathbf{Z} \mid\) & 0.0018 \\
\hline \multicolumn{2}{|l|}{\(Z\) includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 9.7516 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.0018 \\
\hline
\end{tabular}

The SAS System: Output for HbA1c analyses
Compare to P-values for Figure 1 (group differences in Hba1c levels at each year of EDIC) The NPAR1WAY Procedure

EDIC FOLLOWUP YEAR=04
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{\begin{tabular}{l} 
Wilcoxon Scores (Rank Sums) for Variable HBA1C \\
Classified by Variable GROUP
\end{tabular}} \\
GROUP & & Sum of & Expected & Std Dev & \begin{tabular}{r} 
Mean \\
Score
\end{tabular} \\
\hline Intensive Treatment & 640 & 395999.50 & 409600.0 & 6602.46314 & 618.749219 \\
Conventional Treatment & 639 & 422560.50 & 408960.0 & 6602.46314 & 661.284038 \\
\hline \multicolumn{6}{c}{ Average scores were used for ties. } \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 422560.5000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 2.0598 \\
\hline One-Sided Pr > Z & 0.0197 \\
\hline Two-Sided Pr > \(\mathbf{Z} \mid\) & 0.0394 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & 0.0198 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.0396 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 4.2432 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.0394 \\
\hline
\end{tabular}

The SAS System: Output for HbA1c analyses
Compare to P-values for Figure 1 (group differences in Hba1c levels at each year of EDIC) The NPAR1WAY Procedure

\section*{EDIC FOLLOWUP YEAR=05}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable HBA1C Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & \begin{tabular}{l}
Expected \\
Under H0
\end{tabular} & \begin{tabular}{l}
Std Dev \\
Under H0
\end{tabular} & Mean Score \\
\hline Intensive Treatment & 640 & 397935.0 & 409600.0 & 6602.70666 & 621.773438 \\
\hline Conventional Treatment & 639 & 420625.0 & 408960.0 & 6602.70666 & 658.255086 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 420625.0000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 1.7666 \\
\hline One-Sided Pr > Z & 0.0386 \\
\hline Two-Sided Pr > \(\mathbf{Z} \mid\) & 0.0773 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & 0.0388 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.0775 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 3.1212 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.0773 \\
\hline
\end{tabular}

The SAS System: Output for HbA1c analyses
Compare to P-values for Figure 1 (group differences in Hba1c levels at each year of EDIC) The NPAR1WAY Procedure

\section*{EDIC FOLLOWUP YEAR=06}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable HBA1C Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & Expected Under H0 & Std Dev Under H0 & Mean Score \\
\hline Intensive Treatment & 643 & 401658.0 & 415699.50 & 6703.45475 & 624.662519 \\
\hline Conventional Treatment & 649 & 433620.0 & 419578.50 & 6703.45475 & 668.135593 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 401658.0000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & -2.0946 \\
\hline One-Sided \(\operatorname{Pr}\) < Z & 0.0181 \\
\hline Two-Sided Pr > \(\mathbf{Z} \mid\) & 0.0362 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided \(\operatorname{Pr}\) < Z & 0.0182 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.0364 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 4.3876 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.0362 \\
\hline
\end{tabular}

The SAS System: Output for HbA1c analyses
Compare to P-values for Figure 1 (group differences in Hba1c levels at each year of EDIC) The NPAR1WAY Procedure

EDIC FOLLOWUP YEAR=07
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{ Wilcoxon Scores (Rank Sums) for Variable HBA1C } \\
Classified by Variable GROUP \\
& & Sum of & Expected & Std Dev & Mean \\
GROUP & N & Scores & Under H0 & Under H0 & Score \\
\hline Intensive Treatment & 653 & 420712.0 & 424450.0 & 6757.76830 & 644.275651 \\
Conventional Treatment & 646 & 423638.0 & 419900.0 & 6757.76830 & 655.786378 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 423638.0000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 0.5531 \\
\hline One-Sided Pr > Z & 0.2901 \\
\hline Two-Sided Pr > \(\mathrm{Z} \mid\) & 0.5802 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & 0.2902 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathrm{Z}|\) & 0.5803 \\
\hline \multicolumn{2}{|l|}{\(Z\) includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 0.3060 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.5802 \\
\hline
\end{tabular}

The SAS System: Output for HbA1c analyses
Compare to P-values for Figure 1 (group differences in Hba1c levels at each year of EDIC) The NPAR1WAY Procedure

EDIC FOLLOWUP YEAR=08
\begin{tabular}{lrrrrrr}
\hline \multicolumn{6}{c}{ Wilcoxon Scores (Rank Sums) for Variable HBA1C } \\
Classified by Variable GROUP \\
GROUP & & Sum of & Expected & Std Dev & \begin{tabular}{r} 
Mean \\
Score
\end{tabular} \\
\hline Intensive Treatment & 644 & 414241.50 & 412804.0 & 6618.00052 & 643.232143 \\
Conventional Treatment & 637 & 406879.50 & 408317.0 & 6618.00052 & 638.743328 \\
\hline \multicolumn{6}{c}{ Average scores were used for ties. } \\
\hline
\end{tabular}

Wilcoxon Two-Sample Test
Statistic 406879.5000

\section*{Normal Approximation}
\(\mathbf{Z} \quad-0.2171\)

One-Sided Pr < Z
0.4141

Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\)
0.8281
t Approximation
\begin{tabular}{cr} 
One-Sided \(\operatorname{Pr}<\mathbf{Z}\) & 0.4141 \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.8281 \\
\hline \(\mathbf{Z}\) includes a continuity correction of \\
\(\mathbf{0 . 5}\). &
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 0.0472 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.8280 \\
\hline
\end{tabular}

The SAS System: Output for HbA1c analyses
Compare to results in last sentence, p. 2161 (JAMA) - Mean values of HbA1c throughout 8-year period
The UNIVARIATE Procedure
Variable: meanhba (HbA1c (percent)) GROUP = Intensive Treatment
\begin{tabular}{lrlr}
\hline \multicolumn{3}{c}{ Moments } \\
\hline N & 677 & Sum Weights & 677 \\
Mean & 7.98187226 & Sum Observations & 5403.72752 \\
Std Deviation & 1.15302597 & Variance & 1.32946888 \\
Skewness & 0.84713399 & Kurtosis & 1.01563315 \\
Uncorrected SS & 44030.5837 & Corrected SS & 898.720963 \\
Coeff Variation & 14.4455578 & Std Error Mean & 0.04431439 \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline \multicolumn{4}{c}{ Basic Statistical Measures } \\
Location & \multicolumn{2}{c}{ Variability }
\end{tabular}

Note: \(\quad\) The mode displayed is the smallest of 3 modes with a count of 5 .

Tests for Location: Mu0=0
\begin{tabular}{llrll} 
Test & \multicolumn{2}{c}{ Statistic } & \multicolumn{2}{c}{ p Value } \\
\hline Student's t & \(\mathbf{t}\) & 180.1192 & \(\mathbf{P r}>|\mathbf{t}|\) & \(<.0001\) \\
Sign & \(\mathbf{M}\) & 338.5 & \(\mathbf{P r}>=|\mathbf{M}|\) & \(<.0001\) \\
Signed Rank & \(\mathbf{S}\) & 114751.5 & \(\mathbf{P r}>=|\mathbf{S}|\) & \(<.0001\) \\
\hline
\end{tabular}

Quantiles (Definition 5)
\begin{tabular}{lr} 
Quantile & Estimate \\
\hline \(\mathbf{1 0 0 \%}\) Max & 12.97500 \\
\(\mathbf{9 9 \%}\) & 11.43333 \\
\(\mathbf{9 5 \%}\) & 10.23333 \\
\(\mathbf{9 0 \%}\) & 9.53333 \\
75\% Q3 & 8.62222
\end{tabular}

The SAS System: Output for HbA1c analyses
Compare to results in last sentence, p. 2161 (JAMA) - Mean values of HbA1c throughout 8-year period
The UNIVARIATE Procedure
Variable: meanhba (HbA1c (percent))
GROUP = Intensive Treatment
\begin{tabular}{lrr}
\hline \multicolumn{2}{c}{ Quantiles (Definition 5) } \\
Quantile & Estimate \\
\hline 50\% Median & 7.85556 \\
25\% Q1 & 7.15000 \\
10\% & 6.62222 \\
5\% & 6.37778 \\
\(\mathbf{1 \%}\) & 5.98889 \\
\(\mathbf{0 \%}\) Min & 5.76667 \\
\hline \multicolumn{4}{c}{ Extreme Observations } \\
\multicolumn{4}{c}{ Lowest } & Highest \\
Value & Obs & Value \\
\hline 5.76667 & 1823 & Obs \\
\hline 5.76667 & 11.6833 & 1551 \\
\hline 5.82222 & 1518 & 11.6875 \\
\hline 5.84444 & 2006 & 1835 \\
\hline 5.87778 & 1570 & 12.0800 \\
\hline
\end{tabular}

The SAS System: Output for HbA1c analyses
Compare to results in last sentence, p. 2161 (JAMA) - Mean values of HbA1c throughout 8-year period
The UNIVARIATE Procedure
Variable: meanhba (HbA1c (percent)) GROUP = Conventional Treatment
\begin{tabular}{lrlr}
\hline \multicolumn{3}{c}{ Moments } \\
\hline \(\mathbf{N}\) & 674 & Sum Weights & 674 \\
Mean & 8.32192872 & Sum Observations & 5608.97996 \\
Std Deviation & 1.15275308 & Variance & 1.32883967 \\
Skewness & 0.51070504 & Kurtosis & 0.16933616 \\
Uncorrected SS & 47571.8405 & Corrected SS & 894.309101 \\
Coeff Variation & 13.8519942 & Std Error Mean & 0.04440239 \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline \multicolumn{4}{c}{ Basic Statistical Measures } \\
\multicolumn{2}{c}{ Location } & \multicolumn{2}{c}{ Variability } \\
\hline Mean & 8.321929 & Std Deviation & 1.15275 \\
Median & 8.177778 & Variance & 1.32884 \\
Mode & 7.366667 & Range & 7.11111 \\
& & Interquartile Range & 1.53333 \\
\hline
\end{tabular}

Note: \(\quad\) The mode displayed is the smallest of 3 modes with a count of 6 .

Tests for Location: Mu0=0
\begin{tabular}{llrll} 
Test & \multicolumn{2}{c}{ Statistic } & \multicolumn{2}{c}{ p Value } \\
\hline Student's t & \(\mathbf{t}\) & 187.4207 & \(\mathbf{P r}>|\mathbf{t}|\) & \(<.0001\) \\
Sign & \(\mathbf{M}\) & 337 & \(\mathbf{P r}>=|\mathbf{M}|\) & \(<.0001\) \\
Signed Rank & \(\mathbf{S}\) & 113737.5 & \(\mathbf{P r}>=|\mathbf{S}|\) & \(<.0001\) \\
\hline
\end{tabular}

Quantiles (Definition 5)
\begin{tabular}{lr} 
Quantile & Estimate \\
\hline \(\mathbf{1 0 0 \%}\) Max & 12.68889 \\
\(\mathbf{9 9 \%}\) & 11.24444 \\
\(\mathbf{9 5 \%}\) & 10.42222 \\
\(\mathbf{9 0 \%}\) & 9.91667 \\
\(\mathbf{7 5 \%}\) Q3 & 9.05556
\end{tabular}

The SAS System: Output for HbA1c analyses
Compare to results in last sentence, p. 2161 (JAMA) - Mean values of HbA1c throughout 8-year period
The UNIVARIATE Procedure
Variable: meanhba (HbA1c (percent))
GROUP = Conventional Treatment
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Quantiles (Definition 5) } \\
Quantile & Estimate \\
\hline \(\mathbf{5 0 \%}\) Median & 8.17778 \\
\(\mathbf{2 5 \%}\) Q1 & 7.52222 \\
\(\mathbf{1 0 \%}\) & 7.00000 \\
\(\mathbf{5 \%}\) & 6.65556 \\
\(\mathbf{1 \%}\) & 6.01111 \\
\(\mathbf{0 \%}\) Min & 5.57778 \\
\hline
\end{tabular}
\begin{tabular}{ccccc}
\hline \multicolumn{4}{c}{ Extreme Observations } \\
\multicolumn{2}{c}{ Lowest } & \multicolumn{2}{c}{ Highest } \\
Value & Obs & Value & Obs \\
\hline 5.57778 & 2227 & 11.7111 & 2050 \\
5.6222 & 2099 & 11.7333 & 2217 \\
5.77778 & 2373 & 11.9889 & 2266 \\
5.77778 & 2697 & 12.0000 & 2543 \\
5.81111 & 2140 & 12.6889 & 2573 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
GROUP & N & \begin{tabular}{r} 
Sum of \\
Scores
\end{tabular} & \begin{tabular}{r} 
Expected \\
Under H0
\end{tabular} & \begin{tabular}{r} 
Std Dev \\
Under H0
\end{tabular} & \begin{tabular}{r} 
Mean \\
Score
\end{tabular} \\
\hline Intensive Treatment & 677 & 415896.0 & 457652.0 & 7170.02854 & 614.322009 \\
Conventional Treatment & 674 & 497380.0 & 455624.0 & 7170.02854 & 737.952522 \\
\hline
\end{tabular}

Average scores were used for ties.

Wilcoxon Two-Sample Test
Statistic \(\quad 497380.0000\)

Normal Approximation
Z 5.8236

One-Sided Pr > Z <. 0001
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}| \quad<.0001\)
t Approximation
\begin{tabular}{cr} 
One-Sided \(\operatorname{Pr}>\mathrm{Z}\) & \(<.0001\) \\
Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & \(<.0001\) \\
\hline \(\mathbf{Z}\) includes a continuity correction of \\
\(\mathbf{0 . 5}\).
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 33.9153 \\
DF & 1 \\
Pr \(>\) Chi-Square & \(<.0001\) \\
\hline
\end{tabular}

\section*{APPENDIX D}

SAS 9.1 Code and Output for Replication of Selected Analyses in Results: Development of Microalbuminuria and in Results: Development of Clinical Albuminuria, from EDIC Nephropathy Dataset in NIDDK Repository

\title{
The SAS System: Log file for Microalbuminuria Analyses
}

97
98 99 100 101 102 103 104 105
*********************************;
* Development of Microalbuminauria *;
    * Figure 2 *;
data atrisk1(keep=mask_pat); set neph_8yr;
    where base_40=0 and close_40=0 and IntensTx=1 and edicyear=0;
    run;

NOTE: There were 603 observations read from the data set WORK.NEPH_8YR.
WHERE (base_40=0) and (close_40=0) and (IntensTx=1) and (edicyear=0);
NOTE: The data set WORK.ATRISK1 has 603 observations and 1 variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds cpu time 0.00 seconds

106 data NEPH_7(keep=mask_pat p_40); set neph_8yr; where edicyear=7
and p_40^=.;
NOTE: There were 629 observations read from the data set WORK.NEPH_8YR. WHERE (edicyear=7) and (p_40 not = .);
NOTE: The data set WORK.NEPH_7 has 629 observations and 2 variables.
NOTE: DATA statement used (Total process time):
real time 0.03 seconds cpu time 0.01 seconds

107 proc sort; by mask_pat;
NOTE: There were 629 observations read from the data set WORK.NEPH_7.
NOTE: The data set WORK.NEPH_7 has 629 observations and 2 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

108 data NEPH_8(keep=mask_pat p_40); set neph_8yr; where edicyear=8
and p_40^=.;
NOTE: There were 663 observations read from the data set WORK.NEPH_8YR. WHERE (edicyear=8) and (p_40 not = .);

\title{
The SAS System: Log file for Microalbuminuria Analyses
}

The SAS System
14:46
Friday, February 9, 2007
NOTE: The data set WORK.NEPH_8 has 663 observations and 2 variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

109
proc sort; by mask_pat;
NOTE: There were 663 observations read from the data set WORK.NEPH_8.
NOTE: The data set WORK.NEPH_8 has 663 observations and 2 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.00 seconds cpu time 0.00 seconds
```

110 data atrisk1; merge atrisk1(in=in1) neph_7(in=in7)
1 1 1 ~ n e p h _ 8 (i n = i n 8) ;
112 by mask_pat;
113 if in1 and (in7 or in8);
114 * n=572 as stated in the text *;
115 run;

```
NOTE: There were 603 observations read from the data set WORK.ATRISK1.
NOTE: There were 629 observations read from the data set WORK.NEPH_7.
NOTE: There were 663 observations read from the data set WORK.NEPH_8.
NOTE: The data set WORK.ATRISK1 has 572 observations and 2 variables.
NOTE: DATA statement used (Total process time):
    real time 0.01 seconds
    cpu time 0.01 seconds
            proc freq; tables p_40; run;
NOTE: There were 572 observations read from the data set WORK.ATRISK1.
NOTE: The PROCEDURE FREQ printed page 53.
NOTE: PROCEDURE FREQ used (Total process time):
    real time 0.03 seconds
    cpu time 0.01 seconds
117
118 data atrisk0(keep=mask_pat); set neph_8yr;
119
120
    where base_40=0 and close_40=0 and IntensTx=0 and edicyear=0;
    run;

NOTE: There were 567 observations read from the data set WORK.NEPH_8YR. WHERE (base_40=0) and (close_40=0) and (IntensTx=0) and (edicyear=0);
NOTE: The data set WORK.ATRISK0 has 567 observations and 1 variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds cpu time 0.01 seconds

\title{
The SAS System: Log file for Microalbuminuria Analyses
}

Friday, February 9, 2007

121
122
123
124
125
126
```

 data atrisk0; merge atrisk0(in=in1) neph_7(in=in7)
    ```
            neph_8(in=in8);
    by mask_pat;
    if in1 and (in7 or in8);
    * \(\mathrm{n}=547\), as opposed to \(\mathrm{n}=550\) as stated in the text *;
    run;
NOTE: There were 567 observations read from the data set WORK.ATRISK0.
NOTE: There were 629 observations read from the data set WORK.NEPH_7.
NOTE: There were 663 observations read from the data set WORK.NEPH_8.
NOTE: The data set WORK.ATRISK0 has 547 observations and 2 variables.
NOTE: DATA statement used (Total process time):
    real time 0.01 seconds
    cpu time 0.00 seconds
        proc freq; tables p_40; run;
NOTE: There were 547 observations read from the data set WORK.ATRISK0.
NOTE: The PROCEDURE FREQ printed page 54.
NOTE: PROCEDURE FREQ used (Total process time):
    real time 0.03 seconds
    cpu time 0.01 seconds
128
\begin{tabular}{rrrrr}
\hline \multicolumn{5}{c}{ Prevalence indicator of current AER > 40 } \\
& & & \begin{tabular}{r} 
Cumulative \\
P_40
\end{tabular} & Frequency
\end{tabular} Percent \begin{tabular}{rrrr} 
Frequency & \begin{tabular}{r} 
Percent
\end{tabular} \\
\hline No & 533 & 93.18 & 533 \\
Yes & 39 & 6.82 & 572
\end{tabular}

The SAS System: Output for Microalbuminuria Analyses
Compare to results in Second sentence under "Development of Microalbuminuria", p. 2162 (JAMA)
\begin{tabular}{rrrrr}
\hline \multicolumn{5}{c}{ Prevalence indicator of current AER > 40 } \\
& & & \begin{tabular}{r} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{r} 
Cumulative \\
Percent
\end{tabular} \\
\hline P_40 & Frequency & Percent & Frequ & 463 \\
\hline No & 463 & 84.64 & 54.64 \\
Yes & 84 & 15.36 & 547 & 100.00 \\
\hline
\end{tabular}

\title{
The SAS System: Log file for Clinical Albuminuria Analyses
}

128
129
130
131
132
133
134
135
136
```

**;

* Development of Clinical Albuminuria *;
**;
 * Figure 2 *;
data atrisk1b(keep=mask_pat); set neph_8yr;
where close300=0 and IntensTx=1 and edicyear=0;
run;

```
    NOTE: There were 666 observations read from the data set WORK.NEPH_8YR.
    WHERE (close300=0) and (IntensTx=1) and (edicyear=0);
NOTE: The data set WORK.ATRISK1B has 666 observations and 1 variables.
NOTE: DATA statement used (Total process time):
    \(\begin{array}{ll}\text { real time } & 0.01 \text { seconds } \\ \text { cpu time } & 0.00 \text { seconds }\end{array}\)
data NEPH_7b(keep=mask_pat p_300); set neph_8yr; where edicyear=7 and p_300^=.;
NOTE: There were 629 observations read from the data set WORK.NEPH_8YR.
    WHERE (edicyear=7) and (p_300 not = .);
NOTE: The data set WORK.NEPH_7B has 629 observations and 2 variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
    cpu time
0.01 seconds

\title{
The SAS System: Log file for Clinical Albuminuria Analyses
}
proc sort; by mask_pat;
NOTE: There were 629 observations read from the data set WORK.NEPH_7B.
NOTE: The data set WORK.NEPH_7B has 629 observations and 2 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds
The SAS System
14:46 Friday, February 9,
data NEPH_8b(keep=mask_pat p_300); set neph_8yr; where edicyear=8 and p_300^=.;
NOTE: There were 663 observations read from the data set WORK.NEPH_8YR.
WHERE (edicyear=8) and (p_300 not = .);
NOTE: The data set WORK.NEPH_8B has 663 observations and 2 variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds
proc sort; by mask_pat;
NOTE: There were 663 observations read from the data set WORK.NEPH_8B.
NOTE: The data set WORK.NEPH_8B has 663 observations and 2 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds
```

data atrisk1b; merge atrisk1b(in=in1) neph_7b(in=in7)

```
                                neph_8b(in=in8);
by mask_pat;
if in1 and (in7 or in8);
* \(\mathrm{n}=572\) as stated in the text *;
run;

NOTE: There were 666 observations read from the data set WORK.ATRISK1B. NOTE: There were 629 observations read from the data set WORK.NEPH_7B. NOTE: There were 663 observations read from the data set WORK.NEPH_8B. NOTE: The data set WORK.ATRISK1B has 632 observations and 2 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds
proc freq; tables p_300; run;
NOTE: There were 632 observations read from the data set WORK.ATRISK1B.
NOTE: The PROCEDURE FREQ printed page 55.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.03 seconds
cpu time 0.01 seconds

\title{
The SAS System: Log file for Clinical Albuminuria Analyses
}
```

data atrisk0b(keep=mask_pat); set neph_8yr;
where close300=0 and IntensTx=0 and edicyear=0;
run;

```

NOTE: There were 653 observations read from the data set WORK.NEPH_8YR.
WHERE (close300=0) and (IntensTx=0) and (edicyear=0);
NOTE: The data set WORK.ATRISK0B has 653 observations and 1 variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

152
153
154
155
156
157
                data atrisk0b; merge atrisk0b(in=in1) neph_7b(in=in7)
                        neph_8b(in=in8);
            by mask_pat;
            if in1 and (in7 or in8);
    * \(n=626\), as opposed to \(n=630\) stated in the text *;
    run;
NOTE: There were 653 observations read from the data set WORK.ATRISK0B.
NOTE: There were 629 observations read from the data set WORK.NEPH_7B.
NOTE: There were 663 observations read from the data set WORK.NEPH_8B.
NOTE: The data set WORK.ATRISKOB has 626 observations and 2 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds
            proc freq; tables p_300; run;
NOTE: There were 626 observations read from the data set WORK.ATRISK0B.
NOTE: The PROCEDURE FREQ printed page 56.
NOTE: PROCEDURE FREQ used (Total process time):
    real time 0.03 seconds
    cpu time 0.00 seconds

\section*{The SAS System: Output for Clinical Albuminuria Analyses} Compare to results in first sentence under "Development of Clinical Albuminuria"

The FREQ Procedure
\begin{tabular}{rrrrr}
\hline \multicolumn{5}{c}{ Prevalence indicator of current AER > 300 } \\
P_300 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{r} 
Cumulative \\
Percent
\end{tabular} \\
\hline No & 623 & 98.58 & 623 & 98.58 \\
Yes & 9 & 1.42 & 632 & 100.00 \\
\hline
\end{tabular}

\section*{The SAS System}

Compare to results in first sentence under "Development of Clinical Albuminuria"
\begin{tabular}{rrrrr}
\hline \multicolumn{5}{c}{ Prevalence indicator of current AER > 300 } \\
& & & \begin{tabular}{c} 
Cumulative
\end{tabular} \\
P_300 & Frequency & Percent & \begin{tabular}{r} 
Frequency
\end{tabular} & \begin{tabular}{r} 
Percent
\end{tabular} \\
\hline No & 571 & 91.21 & 571 & 91.21 \\
Yes & 55 & 8.79 & 626 & 100.00 \\
\hline
\end{tabular}

\section*{APPENDIX E}

SAS 9.1 Code and Output for Replication of Selected Analyses in Results: Other Kidney Outcomes and in Table 2: Patients With Kidney Outcomes through Year 8 in the EDIC Study, from EDIC Nephropathy Dataset in NIDDK Repository

\title{
The SAS System: Log for analyses of Other Kidney Outcomes
}
```

**************************;

* other kidney outcomes *;
*************************;
** pg.2163, attempt to replicate results in last sentence of first paragraph under
! Other Kidney Outcomes **;
proc means data=neph_8yr noprint; class group mask_pat; var serumcr;
output out=meancreat mean=meancreat; run;

```

\title{
The SAS System: Log for analyses of Other Kidney Outcomes
}

The SAS System
18:28 Friday, February 9,

NOTE: There were 11745 observations read from the data set WORK.NEPH_8YR.
NOTE: The data set WORK.MEANCREAT has 2701 observations and 5 variables.
NOTE: PROCEDURE MEANS used (Total process time):
real time 0.06 seconds
cpu time 0.04 seconds
proc univariate data=meancreat; class group; var meancreat; run;
NOTE: The PROCEDURE UNIVARIATE printed pages 57-60.
NOTE: PROCEDURE UNIVARIATE used (Total process time):
\[
\text { real time } \quad 0.03 \text { seconds }
\]
cpu time 0.01 seconds
proc npar1way wilcoxon data=meancreat; class group; var meancreat; run;

NOTE: There were 2701 observations read from the data set WORK.MEANCREAT.
NOTE: The PROCEDURE NPAR1WAY printed page 61.
NOTE: PROCEDURE NPAR1WAY used (Total process time):
real time 0.15 seconds
cpu time 0.00 seconds

NOTE: There were 1305 observations read from the data set WORK.NEPH_8YR.
WHERE edicyear=7;
NOTE: The PROCEDURE FREQ printed pages 62-63.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.04 seconds
cpu time 0.00 seconds

173
174
175
176
177
178
179

NOTE: There were 11745 observations read from the data set WORK.NEPH_8YR.
NOTE: The data set WORK.NEPH_8YR has 11745 observations and 55 variables.
NOTE: DATA statement used (Total process time):
real time 0.04 seconds
cpu time 0.03 seconds

\title{
The SAS System: Log for analyses of Other Kidney Outcomes
}

The SAS System
18:28 Friday, February 9,
```

data doubles; set neph_8yr; if double=1;

```
    * double = doubling of serum creatinine level from DCCT baseline *
    * i checked this variable against indicator[serumcr >= 2*scr00], data match *;

NOTE: There were 11745 observations read from the data set WORK.NEPH_8YR. NOTE: The data set WORK.DOUBLES has 154 observations and 55 variables.
NOTE: DATA statement used (Total process time):
\begin{tabular}{ll} 
real time & 0.03 seconds \\
cpu time & 0.01 seconds
\end{tabular}
```

proc sort; by mask_pat edicyear;
/*
proc print data=doubles; by mask_pat;
var edicyear group serumcr scr00 double dialysis trans; run;
*/
* get year when creatinine level was first doubled from DCCT bsln *;

```

NOTE: There were 154 observations read from the data set WORK.DOUBLES.
NOTE: The data set WORK.DOUBLES has 154 observations and 55 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds
data firstdoub; set doubles; by mask_pat edicyear;
if first.mask_pat; keep mask_pat edicyear scr00 group; run;
NOTE: There were 154 observations read from the data set WORK.DOUBLES
NOTE: The data set WORK.FIRSTDOUB has 52 observations and 4 variables.
NOTE: DATA statement used (Total process time):
real time
0.01 seconds
cpu time
0.00 seconds

NOTE: There were 52 observations read from the data set WORK.FIRSTDOUB.
NOTE: The PROCEDURE FREQ printed pages 64-65.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.03 seconds
cpu time 0.00 seconds

\footnotetext{
* we get \(\mathrm{n}=52\) subjects who doubled their serum creatinine concentration since DCCT ! bsln, not \(n=27\) as stated in the text and in Table 2. Even if we limit the sample to those who doubled their s.creatinine after DCCT ! closeout,
}

\title{
The SAS System: Log for analyses of Other Kidney Outcomes
}

\author{
The SAS System \\ 18:28 Friday, February 9,
}

WHERE (edicyear=1) and (double not = .);
NOTE: The data set WORK.NEPH_AT1 has 1280 observations and 1 variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.00 seconds
```

proc sort; by mask_pat;

```

NOTE: There were 1280 observations read from the data set WORK.NEPH_AT1.
NOTE: The data set WORK.NEPH_AT1 has 1280 observations and 1 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time
0.00 seconds
cpu time 0.00 seconds
data NEPH_at2(keep=mask_pat); set neph_8yr; where edicyear=2 and double^=.;
NOTE: There were 1263 observations read from the data set WORK.NEPH_8YR.
WHERE (edicyear=2) and (double not = .);
NOTE: The data set WORK.NEPH_AT2 has 1263 observations and 1 variables.
NOTE: DATA statement used (Total process time):
real time
0.01 seconds
cpu time
0.01 seconds
proc sort; by mask_pat;
NOTE: There were 1263 observations read from the data set WORK.NEPH_AT2. NOTE: The data set WORK.NEPH_AT2 has 1263 observations and 1 variables. NOTE: PROCEDURE SORT used (Total process time): real time 0.01 seconds
cpu time 0.01 seconds
data NEPH_at3(keep=mask_pat); set neph_8yr; where edicyear=3 and double^=.;
NOTE: There were 1268 observations read from the data set WORK.NEPH_8YR.
WHERE (edicyear=3) and (double not = .);
NOTE: The data set WORK.NEPH_AT3 has 1268 observations and 1 variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

\title{
The SAS System: Log for analyses of Other Kidney Outcomes
}

The SAS System
18:28 Friday, February 9,
proc sort; by mask_pat;
NOTE: There were 1268 observations read from the data set WORK.NEPH_AT3.
NOTE: The data set WORK.NEPH_AT3 has 1268 observations and 1 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time 0.00 seconds
data NEPH_at4(keep=mask_pat); set neph_8yr; where edicyear=4 and double^=.;
NOTE: There were 1257 observations read from the data set WORK.NEPH_8YR.
WHERE (edicyear=4) and (double not = .);
NOTE: The data set WORK.NEPH_AT4 has 1257 observations and 1 variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds
proc sort; by mask_pat;
NOTE: There were 1257 observations read from the data set WORK.NEPH_AT4.
NOTE: The data set WORK.NEPH_AT4 has 1257 observations and 1 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time 0.00 seconds

209
data NEPH_at5(keep=mask_pat); set neph_8yr; where edicyear=5 and double^=.;
NOTE: There were 1262 observations read from the data set WORK.NEPH_8YR.
WHERE (edicyear=5) and (double not = .);
NOTE: The data set WORK.NEPH_AT5 has 1262 observations and 1 variables.
NOTE: DATA statement used (Total process time):
real time 0.03 seconds
cpu time 0.01 seconds
proc sort; by mask_pat;
NOTE: There were 1262 observations read from the data set WORK.NEPH_AT5.
NOTE: The data set WORK.NEPH_AT5 has 1262 observations and 1 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds
data NEPH_at6(keep=mask_pat); set neph_8yr; where edicyear=6 and double^=.;
NOTE: There were 1270 observations read from the data set WORK.NEPH_8YR.
WHERE (edicyear=6) and (double not = .);

\title{
The SAS System: Log for analyses of Other Kidney Outcomes
}

The SAS System
18:28 Friday, February 9,

NOTE: The data set WORK.NEPH_AT6 has 1270 observations and 1 variables.
NOTE: DATA statement used (Total process time):
real time 0.03 seconds
cpu time 0.01 seconds
proc sort; by mask_pat;

NOTE: There were 1270 observations read from the data set WORK.NEPH_AT6.
NOTE: The data set WORK.NEPH_AT6 has 1270 observations and 1 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds
data NEPH_at7(keep=mask_pat); set neph_8yr; where edicyear=7 and double^=.;
NOTE: There were 1277 observations read from the data set WORK.NEPH_8YR.
WHERE (edicyear=7) and (double not = .);
NOTE: The data set WORK.NEPH_AT7 has 1277 observations and 1 variables.
NOTE: DATA statement used (Total process time):
real time 0.03 seconds
cpu time 0.01 seconds
proc sort; by mask_pat;
NOTE: There were 1277 observations read from the data set WORK.NEPH_AT7.
NOTE: The data set WORK.NEPH_AT7 has 1277 observations and 1 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds
data NEPH_at8(keep=mask_pat); set neph_8yr; where edicyear=8 and double^=.;
NOTE: There were 1250 observations read from the data set WORK.NEPH_8YR.
WHERE (edicyear=8) and (double not \(=\).);
NOTE: The data set WORK.NEPH_AT8 has 1250 observations and 1 variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

NOTE: There were 1250 observations read from the data set WORK.NEPH_AT8.
NOTE: The data set WORK.NEPH_AT8 has 1250 observations and 1 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

\title{
The SAS System: Log for analyses of Other Kidney Outcomes
}

\author{
The SAS System
}

18:28 Friday, February 9,
data neph_base_doub; merge neph_base firstdoub(in=in0 rename=(edicyear=firstyear))
    neph_at1(in=in1) neph_at2(in=in2) neph_at3(in=in3) neph_at4(in=in4)
    neph_at5(in=in5) neph_at6(in=in6) neph_at7(in=in7) neph_at8(in=in8);
    by mask_pat;
    if in0 then firstdoub=1;
    else do; firstdoub=0; firstyear=-1; end; *serum creatinine not doubled from DCCT
                            during the followup period *;
    if in1 and in2 and in3 and in4 and in5 and in6 and in7 and in8;
    run;

NOTE: There were 1349 observations read from the data set WORK.NEPH_BASE.
NOTE: There were 52 observations read from the data set WORK.FIRSTDOUB.
NOTE: There were 1280 observations read from the data set WORK.NEPH_AT1.
NOTE: There were 1263 observations read from the data set WORK.NEPH_AT2.
NOTE: There were 1268 observations read from the data set WORK.NEPH_AT3.
NOTE: There were 1257 observations read from the data set WORK.NEPH_AT4.
NOTE: There were 1262 observations read from the data set WORK.NEPH_AT5.
NOTE: There were 1270 observations read from the data set WORK.NEPH_AT6.
NOTE: There were 1277 observations read from the data set WORK. NEPH_AT7.
NOTE: There were 1250 observations read from the data set WORK.NEPH_AT8.
NOTE: The data set WORK.NEPH_BASE_DOUB has 1038 observations and 56 variables.
NOTE: DATA statement used (Total process time):
real time 0.03 seconds
cpu time 0.03 seconds
proc freq data=neph_base_doub; tables firstdoub*group/chisq exact; run;
NOTE: There were 1038 observations read from the data set WORK.NEPH_BASE_DOUB.
NOTE: The PROCEDURE FREQ printed page 66.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.15 seconds
cpu time 0.01 seconds
```

 * now we get the published numerator (n=27),
 * but denominators are still different... after restricting the sample to those with
 ! complete
creat data at each year of EDIC,
i have an N of 1038, but published N in Table 2 is 1349 *;

```

The SAS System: Output for analyses of Other Kidney Outcomes Compare to results in last sentence of first paragraph of section, JAMA p. 2163 The UNIVARIATE Procedure
Variable: meancreat (Serum creatinine (mg/dL)) GROUP = Intensive Treatment
\begin{tabular}{lrlr}
\hline & \multicolumn{2}{c}{ Moments } & \\
\hline \(\mathbf{N}\) & 677 & Sum Weights & 677 \\
Mean & 0.88906941 & Sum Observations & 601.899991 \\
Std Deviation & 0.18524657 & Variance & 0.03431629 \\
Skewness & 6.05081285 & Kurtosis & 74.0773246 \\
Uncorrected SS & 558.328684 & Corrected SS & 23.1978141 \\
Coeff Variation & 20.836008 & Std Error Mean & 0.0071196 \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline \multicolumn{4}{c}{ Basic Statistical Measures } \\
Location & \multicolumn{2}{c}{ Variability } & \\
\hline Mean & 0.889069 & Std Deviation & 0.18525 \\
Median & 0.875000 & Variance & 0.03432 \\
Mode & 0.800000 & Range & 2.97143 \\
& & Interquartile Range & 0.19206 \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Quantiles (Definition 5) } \\
Quantile & Estimate \\
\hline \(\mathbf{1 0 0 \%}\) Max & 3.571429 \\
\(\mathbf{9 9 \%}\) & 1.366667 \\
\(\mathbf{9 5 \%}\) & 1.100000 \\
\(\mathbf{9 0 \%}\) & 1.044444 \\
\(\mathbf{7 5 \%}\) Q3 & 0.977778 \\
\(\mathbf{5 0 \%}\) Median & 0.875000 \\
\(\mathbf{2 5 \%}\) Q1 & 0.785714 \\
\(\mathbf{1 0 \%}\) & 0.722222
\end{tabular}

The SAS System: Output for analyses of Other Kidney Outcomes
Compare to results in last sentence of first paragraph of section, JAMA p. 2163
The UNIVARIATE Procedure
Variable: meancreat (Serum creatinine (mg/dL))
GROUP = Intensive Treatment
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Quantiles (Definition 5)} \\
\hline \multicolumn{2}{|l|}{Quantile} & \multicolumn{2}{|l|}{Estimate} \\
\hline \multicolumn{2}{|l|}{5\%} & \multicolumn{2}{|r|}{0.683333} \\
\hline \multicolumn{2}{|l|}{1\%} & \multicolumn{2}{|r|}{0.622222} \\
\hline \multicolumn{2}{|l|}{0\% Min} & \multicolumn{2}{|r|}{0.600000} \\
\hline \multicolumn{4}{|l|}{Extreme Observations} \\
\hline \multicolumn{2}{|l|}{Lowest} & \multicolumn{2}{|l|}{Highest} \\
\hline Value & Obs & Value & Obs \\
\hline 0.600000 & 1976 & 1.50000 & 1365 \\
\hline 0.600000 & 1748 & 1.93333 & 1796 \\
\hline 0.600000 & 1405 & 2.07500 & 1419 \\
\hline 0.611111 & 1922 & 2.40000 & 1811 \\
\hline 0.611111 & 1465 & 3.57143 & 1861 \\
\hline
\end{tabular}

The SAS System: Output for analyses of Other Kidney Outcomes Compare to results in last sentence of first paragraph of section, JAMA p. 2163 The UNIVARIATE Procedure
Variable: meancreat (Serum creatinine (mg/dL)) GROUP = Conventional Treatment
\begin{tabular}{lrrr}
\hline \multicolumn{3}{c}{ Moments } \\
\hline N & 674 & Sum Weights & 674 \\
Mean & 0.90651462 & Sum Observations & 610.990851 \\
Std Deviation & 0.1960986 & Variance & 0.03845466 \\
Skewness & 2.7580103 & Kurtosis & 14.1929654 \\
Uncorrected SS & 579.752124 & Corrected SS & 25.8799875 \\
Coeff Variation & 21.6321501 & Std Error Mean & 0.00755344 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Basic Statistical Measures} \\
\hline \multicolumn{2}{|r|}{Location} & \multicolumn{3}{|c|}{Variability} \\
\hline Mean & 0.906515 & Std Deviati & & 0.19610 \\
\hline Median & 0.886607 & Variance & & 0.03845 \\
\hline \multirow[t]{2}{*}{Mode} & 0.888889 & Range & & 1.87778 \\
\hline & \multicolumn{3}{|r|}{Interquartile Range 0.20000} & 0.20000 \\
\hline \multicolumn{5}{|c|}{Tests for Location: Mu0=0} \\
\hline Test & \multicolumn{2}{|r|}{Statistic} & \multicolumn{2}{|l|}{p Value} \\
\hline Student's t & t & 120.0135 & \(\operatorname{Pr}>|t|\) & <. 0001 \\
\hline Sign & M & 337 & \(\operatorname{Pr}>=|\mathbf{M}|\) & <. 0001 \\
\hline Signed Ran & ank S & 113737.5 & Pr >= |S| & <. 0001 \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Quantiles (Definition 5) } \\
Quantile & Estimate \\
\hline \(\mathbf{1 0 0 \%}\) Max & 2.400000 \\
\(\mathbf{9 9 \%}\) & 1.737500 \\
\(\mathbf{9 5 \%}\) & 1.188889 \\
\(\mathbf{9 0 \%}\) & 1.077778 \\
\(\mathbf{7 5 \%}\) Q3 & 0.988889 \\
\(\mathbf{5 0 \%}\) Median & 0.886607 \\
\(\mathbf{2 5 \%}\) Q1 & 0.788889
\end{tabular}

The SAS System: Output for analyses of Other Kidney Outcomes
Compare to results in last sentence of first paragraph of section, JAMA p. 2163
The UNIVARIATE Procedure
Variable: meancreat (Serum creatinine (mg/dL))
GROUP = Conventional Treatment
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Quantiles (Definition 5) } \\
Quantile & Estimate \\
\hline \(\mathbf{1 0 \%}\) & 0.711111 \\
\(\mathbf{5 \%}\) & 0.677778 \\
\(\mathbf{1 \%}\) & 0.633333 \\
\(\mathbf{0 \%} \mathbf{M i n}\) & 0.522222 \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\hline \multicolumn{4}{c}{ Extreme Observations } \\
\multicolumn{2}{c}{ Lowest } & \multicolumn{2}{c}{ Highest } \\
\multicolumn{2}{c}{ Value } & Obs & Value & Obs \\
\hline 0.522222 & 2685 & 1.88571 & 2037 \\
0.600000 & 2368 & 1.98750 & 2207 \\
0.622222 & 2251 & 2.15000 & 2098 \\
0.633333 & 2543 & 2.30000 & 2346 \\
0.633333 & 2274 & 2.40000 & 2111 \\
\hline
\end{tabular}

The SAS System: Output for analyses of Other Kidney Outcomes Compare to results in last sentence of first paragraph of section, JAMA p. 2163 The NPAR1WAY Procedure
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Wilcoxon Scores (Rank Sums) for Variable meancreat Classified by Variable GROUP} \\
\hline GROUP & N & Sum of Scores & Expected Under \(\mathbf{H 0}\) & Std Dev Under H0 & Mean Score \\
\hline Intensive Treatment & 677 & 449706.0 & 457652.0 & 7169.51988 & 664.262925 \\
\hline Conventional Treatment & 674 & 463570.0 & 455624.0 & 7169.51988 & 687.789318 \\
\hline
\end{tabular}

Average scores were used for ties.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wilcoxon Two-Sample Test} \\
\hline Statistic & 463570.0000 \\
\hline \multicolumn{2}{|l|}{Normal Approximation} \\
\hline Z & 1.1082 \\
\hline One-Sided Pr > Z & 0.1339 \\
\hline Two-Sided Pr > \(\mathrm{Z} \mid\) & 0.2678 \\
\hline \multicolumn{2}{|l|}{t Approximation} \\
\hline One-Sided Pr > Z & 0.1340 \\
\hline Two-Sided \(\operatorname{Pr}>|\mathbf{Z}|\) & 0.2680 \\
\hline \multicolumn{2}{|l|}{Z includes a continuity correction of 0.5.} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Kruskal-Wallis Test } \\
\hline Chi-Square & 1.2283 \\
DF & 1 \\
Pr \(>\) Chi-Square & 0.2677 \\
\hline
\end{tabular}

The SAS System: Output for analyses of Other Kidney Outcomes Compare to results in last sentence of second paragraph of section, JAMA p. 2163 The FREQ Procedure
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Table of GROUP by CLR_70} \\
\hline GROUP(TREATMENT GROUP) & CLR_70( clearan & \begin{tabular}{l}
dard \\
70)
\end{tabular} & \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & No & Yes & Total \\
\hline Intensive Treatment & \[
\begin{array}{r}
320 \\
50.87 \\
99.38 \\
51.86
\end{array}
\] & \[
\begin{array}{r}
2 \\
0.32 \\
0.62 \\
16.67
\end{array}
\] & \[
\begin{array}{r}
322 \\
51.19
\end{array}
\] \\
\hline Conventional Treatment & \[
\begin{array}{r}
297 \\
47.22 \\
96.74 \\
48.14
\end{array}
\] & \[
\begin{array}{r}
10 \\
1.59 \\
3.26 \\
83.33
\end{array}
\] & \[
\begin{array}{r}
307 \\
48.81
\end{array}
\] \\
\hline Total & \[
\begin{array}{r}
617 \\
98.09
\end{array}
\] & \[
\begin{array}{r}
12 \\
1.91
\end{array}
\] & \[
\begin{array}{r}
629 \\
100.00
\end{array}
\] \\
\hline \multicolumn{4}{|c|}{Frequency Missing = 676} \\
\hline
\end{tabular}

Statistics for Table of GROUP by CLR_70
\begin{tabular}{lrcc}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 5.8363 & 0.0157 \\
Likelihood Ratio Chi-Square & 1 & 6.3219 & 0.0119 \\
Continuity Adj. Chi-Square & 1 & 4.5126 & 0.0336 \\
Mantel-Haenszel Chi-Square & 1 & 5.8270 & 0.0158 \\
Phi Coefficient & & 0.0963 & \\
Contingency Coefficient & & 0.0959 & \\
Cramer's V & & 0.0963 & \\
\hline
\end{tabular}

The SAS System: Output for analyses of Other Kidney Outcomes
The FREQ Procedure
Statistics for Table of GROUP by CLR_70
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Fisher's Exact Test} \\
\hline Cell (1,1) Frequency (F) & 320 \\
\hline Left-sided Pr <= F & 0.9977 \\
\hline Right-sided Pr > F F & 0.0150 \\
\hline Table Probability (P) & 0.0127 \\
\hline Two-sided Pr <= P & 0.0187 \\
\hline Effective Sample Siz Frequency Missing & \[
\begin{aligned}
& =629 \\
& =676
\end{aligned}
\] \\
\hline
\end{tabular}

The SAS System: Output for analyses of Other Kidney Outcomes
First year during EDIC subjects doubled their serum creatinine levels from DCCT bsIn, by treatment group, (Total \(\mathrm{n}=52\) )
Compare to (Total n=27), Table 2, line 1, JAMA p. 2163
The FREQ Procedure

Table of EDICYEAR by GROUP
\begin{tabular}{cc} 
EDICYEAR(EDIC & \\
FOLLOWUP & GROUP(TREATMENT \\
YEAR) & GROUP)
\end{tabular}

Frequency
Percent
\begin{tabular}{lrrrr} 
Row Pct & \begin{tabular}{r} 
Intensive \\
Treatment
\end{tabular} & \begin{tabular}{r} 
Conventional \\
Treatment
\end{tabular} & Total \\
\hline & \(\mathbf{0 0}\) & 4 & 3 & 7 \\
& & 7.69 & 5.77 & 13.46 \\
& & 57.14 & 42.86 & \\
& & 26.67 & 8.11 &
\end{tabular}
\begin{tabular}{crrr}
\(\mathbf{0 1}\) & 1 & 6 & 7 \\
& 1.92 & 11.54 & 13.46 \\
& 14.29 & 85.71 & \\
& 6.67 & 16.22 & \\
\(\mathbf{0 2}\) & 3 & 5 & 8 \\
& 5.77 & 9.62 & 15.38 \\
& 37.50 & 62.50 & \\
& 20.00 & 13.51 & \\
\(\mathbf{0 3}\) & 1 & 3 & 4 \\
& 1.92 & 5.77 & 7.69 \\
& 25.00 & 75.00 & \\
& 6.67 & 8.11 & \\
\(\mathbf{0 4}\) & 0 & 3 & 3 \\
& 0.00 & 5.77 & 5.77 \\
& 0.00 & 100.00 & \\
& 0.00 & 8.11 & \\
\(\mathbf{0 5}\) & 2 & 6 & 8 \\
& 3.85 & 11.54 & 15.38 \\
& 25.00 & 75.00 & \\
& 13.33 & 16.22 & \\
\(\mathbf{0 6}\) & 2 & 2 & 4 \\
& 3.85 & 3.85 & 7.69 \\
& 50.00 & 50.00 & \\
& 13.33 & 5.41 & \\
\(\mathbf{0 7}\) & 0 & 5 & 5 \\
& 0.00 & 9.62 & 9.62 \\
& 0.00 & 100.00 & \\
& 0.00 & 13.51 & \\
\(\mathbf{0 8}\) & 2 & 4 & 6 \\
& 33.85 & 7.69 & 11.54 \\
& 33.33 & 66.67 & \\
& 10.81 & \\
& & &
\end{tabular}

The SAS System: Output for analyses of Other Kidney Outcomes
First year during EDIC subjects doubled their serum creatinine levels from DCCT bsIn, by treatment group, (Total \(\mathrm{n}=52\) )
Compare to (Total n=27), Table 2, line 1, JAMA p. 2163
The FREQ Procedure

Table of EDICYEAR by GROUP
\begin{tabular}{lrrr} 
EDICYEAR(EDIC & & & \\
\multicolumn{1}{c}{ FOLLOWUP } & GROUP(TREATMENT & \\
\multicolumn{1}{c}{ YEAR) } & GROUP) & & \\
Frequency & & & \\
Percent & & & \\
Row Pct & Intensive & Conventional & \\
Col Pct & Treatment & Treatment & Total \\
\hline Total & 15 & 37 & 52 \\
& 28.85 & 71.15 & 100.00 \\
\hline
\end{tabular}

The SAS System: Output for analyses of Other Kidney Outcomes
EDIC subjects who doubled their serum creatinine levels from DCCT bsin, by treatment group, with serum creatinine data at each year of EDIC (Total \(n=27\), out of \(\mathrm{N}=1038\) )

Compare to (Total \(\mathrm{n}=27\), out of \(\mathrm{N}=1349\) ), Table 2, line 1, JAMA p. 2163
The FREQ Procedure
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Table of firstdoub by GROUP} \\
\hline firstdoub & \multicolumn{3}{|l|}{GROUP(TREATMENT GROUP)} \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & Intensive Treatment & Conventional Treatment & Total \\
\hline 0 & 511 & 500 & 1011 \\
\hline & 49.23 & 48.17 & 97.40 \\
\hline & 50.54 & 49.46 & \\
\hline & 98.27 & 96.53 & \\
\hline 1 & 9 & 18 & 27 \\
\hline & 0.87 & 1.73 & 2.60 \\
\hline & 33.33 & 66.67 & \\
\hline & 1.73 & 3.47 & \\
\hline Total & 520 & 518 & 1038 \\
\hline & 50.10 & 49.90 & 100.00 \\
\hline
\end{tabular}

Statistics for Table of firstdoub by GROUP
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 3.1158 & 0.0775 \\
Likelihood Ratio Chi-Square & 1 & 3.1740 & 0.0748 \\
Continuity Adj. Chi-Square & 1 & 2.4654 & 0.1164 \\
Mantel-Haenszel Chi-Square & 1 & 3.1128 & 0.0777 \\
Phi Coefficient & & 0.0548 & \\
Contingency Coefficient & & 0.0547 & \\
Cramer's V & 0.0548 & \\
\hline
\end{tabular}

The SAS System: Output for analyses of Other Kidney Outcomes
\begin{tabular}{lr}
\multicolumn{2}{c}{ The FREQ Procedure } \\
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 511 \\
Left-sided Pr <= F & 0.9760 \\
Right-sided Pr >= F & 0.0574 \\
& \\
Table Probability (P) & 0.0334 \\
Two-sided Pr <= P & 0.0826 \\
\hline
\end{tabular}
\[
\text { Sample Size = } 1038
\]

\section*{APPENDIX F}

SAS 9.1 Code and Output for Replication of Selected Analyses in Results: Blood Pressure/Hypertension and in Figure 4: Prevalence of Hypertension at Each Year of the EDIC Study, from EDIC Nephropathy Dataset in NIDDK Repository

\title{
The SAS System: Log for analyses of Blood Pressure/Hypertension
}
************************************;
* Blood pressure / hypertension (HT) *;
************************************;
* Figure 4 *;
proc sort data=NEPH_BASE; by mask_pat;
NOTE: There were 1349 observations read from the data set WORK.NEPH_BASE. NOTE: The data set WORK. NEPH_BASE has 1349 observations and 54 variables. NOTE: PROCEDURE SORT used (Total process time):

\title{
The SAS System: Log for analyses of Blood Pressure/Hypertension
}

2007
\begin{tabular}{ll} 
real time & 0.01 seconds \\
cpu time & 0.01 seconds
\end{tabular}
cpu time
0.01 seconds

NOTE: There were 11745 observations read from the data set WORK.NEPH_8YR.
NOTE: The data set WORK.NEPH_8YR has 11745 observations and 55 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.06 seconds
cpu time 0.06 seconds
data neph_8yr; merge neph_8yr neph_base(keep=mask_pat map rename=(map=map0)); by mask_pat; run;

NOTE: There were 11745 observations read from the data set WORK.NEPH_8YR.
NOTE: There were 1349 observations read from the data set WORK.NEPH_BASE.
NOTE: The data set WORK. NEPH_8YR has 11745 observations and 56 variables.
NOTE: DATA statement used (Total process time):
real time 0.06 seconds
cpu time 0.06 seconds

243
244
245
246
NOTE: There were 11745 observations read from the data set WORK.NEPH_8YR.
NOTE: The data set WORK. NEPH_8YR has 11745 observations and 56 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.07 seconds
cpu time 0.06 seconds
proc freq data=neph_8yr; by edicyear;
tables group*ht/chisq exact; run;
NOTE: There were 11745 observations read from the data set WORK.NEPH_8YR.
NOTE: The PROCEDURE FREQ printed pages 67-75.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.10 seconds
cpu time 0.06 seconds
proc freq data=neph_8yr noprint; by edicyear group;
tables ht/out=htprevs; run;
NOTE: There were 11745 observations read from the data set WORK.NEPH_8YR.
NOTE: The data set WORK.HTPREVS has 36 observations and 5 variables.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.01 seconds

\title{
The SAS System: Log for analyses of Blood Pressure/Hypertension
}

2007
The SAS System
12:13 Monday, February 12,
cpu time 0.01 seconds

251
252
253
NOTE: There were 18 observations read from the data set WORK.HTPREVS.
WHERE ht=1;
NOTE: The PROCEDURE PRINT printed page 76.
NOTE: PROCEDURE PRINT used (Total process time):
real time 0.06 seconds
cpu time 0.00 seconds

254
255
255
256
257
258
NOTE: PROC LOGISTIC is modeling the probability that HT='Yes'.
NOTE: Convergence criterion (GCONV=1E-8) satisfied.
NOTE: The above message was for the following by-group:
EDIC FOLLOWUP YEAR=00
NOTE: PROC LOGISTIC is modeling the probability that HT='Yes'.
NOTE: Convergence criterion (GCONV=1E-8) satisfied.
NOTE: The above message was for the following by-group:
EDIC FOLLOWUP YEAR=01
NOTE: PROC LOGISTIC is modeling the probability that HT='Yes'.
NOTE: Convergence criterion (GCONV=1E-8) satisfied.
NOTE: The above message was for the following by-group:
EDIC FOLLOWUP YEAR=02
NOTE: PROC LOGISTIC is modeling the probability that HT='Yes'.
NOTE: Convergence criterion (GCONV=1E-8) satisfied.
NOTE: The above message was for the following by-group:
EDIC FOLLOWUP YEAR=03
NOTE: PROC LOGISTIC is modeling the probability that HT='Yes'.
NOTE: Convergence criterion (GCONV=1E-8) satisfied.
NOTE: The above message was for the following by-group:
EDIC FOLLOWUP YEAR=04
NOTE: PROC LOGISTIC is modeling the probability that HT='Yes'.
NOTE: Convergence criterion (GCONV=1E-8) satisfied.
NOTE: The above message was for the following by-group:
EDIC FOLLOWUP YEAR=05
NOTE: PROC LOGISTIC is modeling the probability that HT='Yes'.
NOTE: Convergence criterion (GCONV=1E-8) satisfied.
NOTE: The above message was for the following by-group:
EDIC FOLLOWUP YEAR=06
NOTE: PROC LOGISTIC is modeling the probability that HT='Yes'.
NOTE: Convergence criterion (GCONV=1E-8) satisfied.
NOTE: The above message was for the following by-group:

\title{
The SAS System: Log for analyses of Blood Pressure/Hypertension
}

EDIC FOLLOWUP YEAR=07
NOTE: PROC LOGISTIC is modeling the probability that HT='Yes'.
NOTE: Convergence criterion (GCONV=1E-8) satisfied.
NOTE: The above message was for the following by-group:
EDIC FOLLOWUP YEAR=08
NOTE: There were 11745 observations read from the data set WORK.NEPH_8YR.
NOTE: The PROCEDURE LOGISTIC printed pages 77-94.
NOTE: PROCEDURE LOGISTIC used (Total process time):
real time 0.39 seconds
cpu time
0.25 seconds
```

 * either way, results are close to published p-values *;
 ods rtf close; run;
    ```

Compare to results in first paragraph in section and Figure 4, JAMA p. 2164
EDIC FOLLOWUP YEAR=00
\begin{tabular}{lrrr}
\hline \multicolumn{3}{c}{ Table of GROUP by HT } & \\
& \begin{tabular}{c} 
HT(Current \\
Hypertension \\
(>=140/90))
\end{tabular} & \\
\begin{tabular}{l} 
GROUP(TREATMENT \\
GROUP)
\end{tabular} & & & \\
Frequency \\
Percent \\
Row Pct \\
Col Pct & & & \\
\hline \multicolumn{1}{c}{ Intensive Treatment } & 602 & 74 & 676 \\
& 44.63 & 5.49 & 50.11 \\
& 89.05 & 10.95 & \\
& 50.00 & 51.03 & \\
Conventional Treatment & 602 & 71 & 673 \\
& 44.63 & 5.26 & 49.89 \\
& 89.45 & 10.55 & \\
& 50.00 & 48.97 & \\
Total & 1204 & 145 & 1349 \\
& 89.25 & 10.75 & 100.00 \\
\hline
\end{tabular}

Statistics for Table of GROUP by HT
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.0554 & 0.8139 \\
Likelihood Ratio Chi-Square & 1 & 0.0554 & 0.8139 \\
Continuity Adj. Chi-Square & 1 & 0.0217 & 0.8828 \\
Mantel-Haenszel Chi-Square & 1 & 0.0554 & 0.8140 \\
Phi Coefficient & & -0.0064 & \\
Contingency Coefficient & & 0.0064 & \\
Cramer's V & & -0.0064 & \\
\hline
\end{tabular}

\title{
The FREQ Procedure
}

Compare to results in first paragraph in section and Figure 4, JAMA p. 2164 Statistics for Table of GROUP by HT

\section*{EDIC FOLLOWUP YEAR=00}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 602 \\
Left-sided Pr <= F & 0.4414 \\
Right-sided Pr >= F & 0.6267 \\
Table Probability (P) & 0.0681 \\
Two-sided Pr <= P & 0.8606 \\
\hline
\end{tabular}

Sample Size = 1349

The FREQ Procedure
Compare to results in first paragraph in section and Figure 4, JAMA p. 2164
EDIC FOLLOWUP YEAR=01
\begin{tabular}{lrrr}
\hline \multicolumn{3}{c}{ Table of GROUP by HT } \\
& \begin{tabular}{c} 
HT(Current \\
Hypertension \\
\((>=140 / 90)\)
\end{tabular} & \\
\begin{tabular}{l} 
GROUP(TREATMENT \\
GROUP)
\end{tabular} & & \\
\begin{tabular}{l} 
Frequency \\
Percent
\end{tabular} & & & \\
Row Pct & & & \\
Col Pct & 542 & 110 & 652 \\
\hline \multicolumn{1}{c}{ Intensive Treatment } & 41.69 & 8.46 & 50.15 \\
& 83.13 & 16.87 & \\
& 49.91 & 51.40 & \\
& 544 & 104 & 648 \\
Conventional Treatment & 41.85 & 8.00 & 49.85 \\
& 83.95 & 16.05 & \\
& 50.09 & 48.60 & \\
& 1086 & 214 & 1300 \\
Total & 83.54 & 16.46 & 100.00 \\
\hline
\end{tabular}

Statistics for Table of GROUP by HT
\begin{tabular}{lrrc}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.1596 & 0.6895 \\
Likelihood Ratio Chi-Square & 1 & 0.1596 & 0.6895 \\
Continuity Adj. Chi-Square & 1 & 0.1054 & 0.7454 \\
Mantel-Haenszel Chi-Square & 1 & 0.1595 & 0.6896 \\
Phi Coefficient & & -0.0111 & \\
Contingency Coefficient & & 0.0111 & \\
Cramer's V & -0.0111 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 542 \\
Left-sided \(\operatorname{Pr}<=\mathbf{F}\) & 0.3727 \\
Right-sided Pr >= F & 0.6823 \\
& \\
Table Probability (P) & 0.0551 \\
Two-sided Pr <= P & 0.7088 \\
\hline \multicolumn{2}{c}{ Sample Size = 1300 }
\end{tabular}

The FREQ Procedure
Compare to results in first paragraph in section and Figure 4, JAMA p. 2164
EDIC FOLLOWUP YEAR=02
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Table of GROUP by HT} \\
\hline GROUP(TREATMENT
GROUP) & \multicolumn{3}{|l|}{\begin{tabular}{l}
HT(Current \\
Hypertension ( \(>=140 / 90\) ))
\end{tabular}} \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & No & Yes & Total \\
\hline Intensive Treatment & \[
\begin{array}{r}
530 \\
40.83 \\
81.41 \\
50.48
\end{array}
\] & \[
\begin{array}{r}
121 \\
9.32 \\
18.59 \\
48.79
\end{array}
\] & \[
\begin{array}{r}
651 \\
50.15
\end{array}
\] \\
\hline Conventional Treatment & \[
\begin{array}{r}
520 \\
40.06 \\
80.37 \\
49.52
\end{array}
\] & \[
\begin{array}{r}
127 \\
9.78 \\
19.63 \\
51.21
\end{array}
\] & \[
\begin{array}{r}
647 \\
49.85
\end{array}
\] \\
\hline Total & \[
\begin{array}{r}
1050 \\
80.89
\end{array}
\] & \[
\begin{array}{r}
248 \\
19.11
\end{array}
\] & \[
\begin{array}{r}
1298 \\
100.00
\end{array}
\] \\
\hline
\end{tabular}

\section*{Statistics for Table of GROUP by HT}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.2281 & 0.6330 \\
Likelihood Ratio Chi-Square & 1 & 0.2281 & 0.6329 \\
Continuity Adj. Chi-Square & 1 & 0.1656 & 0.6840 \\
Mantel-Haenszel Chi-Square & 1 & 0.2279 & 0.6331 \\
Phi Coefficient & & 0.0133 & \\
Contingency Coefficient & & 0.0133 & \\
Cramer's V & & 0.0133 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 530 \\
Left-sided \(\operatorname{Pr}<=\) F & 0.7082 \\
Right-sided Pr >= F & 0.3420 \\
& \\
Table Probability (P) & 0.0502 \\
Two-sided Pr <= P & 0.6719 \\
\hline \multicolumn{2}{c}{ Sample Size = 1298 }
\end{tabular}

The FREQ Procedure
Compare to results in first paragraph in section and Figure 4, JAMA p. 2164
EDIC FOLLOWUP YEAR=03
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Table of GROUP by HT} \\
\hline GROUP(TREATMENT GROUP) & \multicolumn{2}{|l|}{HT(Current Hypertension ( \(>=140 / 90\) ))} & \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & No & Yes & Total \\
\hline Intensive Treatment & \[
\begin{array}{r}
529 \\
40.60 \\
81.26 \\
52.32
\end{array}
\] & \[
\begin{array}{r}
122 \\
9.36 \\
18.74 \\
41.78
\end{array}
\] & \[
\begin{array}{r}
651 \\
49.96
\end{array}
\] \\
\hline Conventional Treatment & \[
\begin{array}{r}
482 \\
36.99 \\
73.93 \\
47.68
\end{array}
\] & \[
\begin{array}{r}
170 \\
13.05 \\
26.07 \\
58.22
\end{array}
\] & \[
\begin{array}{r}
652 \\
50.04
\end{array}
\] \\
\hline Total & \[
\begin{array}{r}
1011 \\
77.59
\end{array}
\] & \[
\begin{array}{r}
292 \\
22.41
\end{array}
\] & \[
\begin{array}{r}
1303 \\
100.00
\end{array}
\] \\
\hline
\end{tabular}

Statistics for Table of GROUP by HT
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 10.0746 & 0.0015 \\
Likelihood Ratio Chi-Square & 1 & 10.1113 & 0.0015 \\
Continuity Adj. Chi-Square & 1 & 9.6573 & 0.0019 \\
Mantel-Haenszel Chi-Square & 1 & 10.0669 & 0.0015 \\
Phi Coefficient & & 0.0879 & \\
Contingency Coefficient & & 0.0876 & \\
Cramer's V & & 0.0879 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 529 \\
Left-sided \(\operatorname{Pr}<=\mathbf{F}\) & 0.9994 \\
Right-sided Pr >= F & \(9.276 \mathrm{E}-04\) \\
& \\
Table Probability (P) & \(3.425 \mathrm{E}-04\) \\
Two-sided Pr <= P & 0.0018 \\
\hline \multicolumn{2}{c}{ Sample Size \(=\mathbf{1 3 0 3}\)}
\end{tabular}

The FREQ Procedure
Compare to results in first paragraph in section and Figure 4, JAMA p. 2164
EDIC FOLLOWUP YEAR=04

Table of GROUP by HT
HT(Current
\begin{tabular}{cc} 
GROUP(TREATMENT & \begin{tabular}{c} 
Hypertension \\
GROUP)
\end{tabular} \\
\((>=140 / 90)\)
\end{tabular}
\begin{tabular}{lrrr}
\begin{tabular}{l} 
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & & & \\
\hline \multicolumn{1}{c}{ Intensive Treatment } & 508 & 138 & 646 \\
& 39.35 & 10.69 & 50.04 \\
& 78.64 & 21.36 & \\
& 51.94 & 44.09 & \\
Conventional Treatment & 470 & 175 & 645 \\
& 36.41 & 13.56 & 49.96 \\
& 72.87 & 27.13 & \\
& 48.06 & 55.91 & \\
Total & 978 & 313 & 1291 \\
& 75.76 & 24.24 & 100.00 \\
\hline
\end{tabular}

\section*{Statistics for Table of GROUP by HT}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 5.8495 & 0.0156 \\
Likelihood Ratio Chi-Square & 1 & 5.8601 & 0.0155 \\
Continuity Adj. Chi-Square & 1 & 5.5396 & 0.0186 \\
Mantel-Haenszel Chi-Square & 1 & 5.8450 & 0.0156 \\
Phi Coefficient & & 0.0673 & \\
Contingency Coefficient & & 0.0672 & \\
Cramer's V & & 0.0673 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 508 \\
Left-sided Pr <= F & 0.9935 \\
Right-sided Pr >= F & 0.0093 \\
\\
Table Probability (P) & 0.0028 \\
Two-sided \(\operatorname{Pr}<=\mathbf{P}\) & 0.0163 \\
\hline \multicolumn{2}{c}{ Sample Size \(=\mathbf{1 2 9 1}\)}
\end{tabular}

The FREQ Procedure
Compare to results in first paragraph in section and Figure 4, JAMA p. 2164
EDIC FOLLOWUP YEAR=05
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Table of GROUP by HT} \\
\hline GROUP(TREATMENT
GROUP) & \multicolumn{3}{|l|}{\begin{tabular}{l}
HT(Current \\
Hypertension ( \(>=140 / 90\) ))
\end{tabular}} \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & No & Yes & Total \\
\hline Intensive Treatment & \[
\begin{array}{r}
496 \\
38.36 \\
76.66 \\
53.10
\end{array}
\] & \[
\begin{array}{r}
151 \\
11.68 \\
23.34 \\
42.06
\end{array}
\] & 647
50.04 \\
\hline Conventional Treatment & \[
\begin{array}{r}
438 \\
33.87 \\
67.80 \\
46.90
\end{array}
\] & \[
\begin{array}{r}
208 \\
16.09 \\
32.20 \\
57.94
\end{array}
\] & \[
\begin{array}{r}
646 \\
49.96
\end{array}
\] \\
\hline Total & \[
\begin{array}{r}
934 \\
72.24
\end{array}
\] & \[
\begin{array}{r}
359 \\
27.76
\end{array}
\] & \[
\begin{array}{r}
1293 \\
100.00
\end{array}
\] \\
\hline
\end{tabular}

Statistics for Table of GROUP by HT
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 12.6511 & 0.0004 \\
Likelihood Ratio Chi-Square & 1 & 12.6918 & 0.0004 \\
Continuity Adj. Chi-Square & 1 & 12.2132 & 0.0005 \\
Mantel-Haenszel Chi-Square & 1 & 12.6413 & 0.0004 \\
Phi Coefficient & & 0.0989 & \\
Contingency Coefficient & & 0.0984 & \\
Cramer's V & & 0.0989 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 496 \\
Left-sided \(\operatorname{Pr}<=\) F & 0.9999 \\
Right-sided Pr >= F & \(2.329 \mathrm{E}-04\) \\
& \\
Table Probability (P) & \(8.812 \mathrm{E}-05\) \\
Two-sided Pr \(<=\mathbf{P}\) & \(3.982 \mathrm{E}-04\) \\
\hline \multicolumn{2}{c}{ Sample Size = 1293 }
\end{tabular}

The FREQ Procedure
Compare to results in first paragraph in section and Figure 4, JAMA p. 2164
EDIC FOLLOWUP YEAR=06
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Table of GROUP by HT} \\
\hline \[
\begin{aligned}
& \text { GROUP(TREATMENT } \\
& \text { GROUP) }
\end{aligned}
\] & \multicolumn{2}{|l|}{HT(Current Hypertension ( \(>=140 / 90\) ))} & \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & No & Yes & Total \\
\hline \multirow[t]{4}{*}{Intensive Treatment} & 467 & 186 & 653 \\
\hline & 35.73 & 14.23 & 49.96 \\
\hline & 71.52 & 28.48 & \\
\hline & 52.35 & 44.82 & \\
\hline \multirow[t]{4}{*}{Conventional Treatment} & 425 & 229 & 654 \\
\hline & 32.52 & 17.52 & 50.04 \\
\hline & 64.98 & 35.02 & \\
\hline & 47.65 & 55.18 & \\
\hline \multirow[t]{2}{*}{Total} & 892 & 415 & 1307 \\
\hline & 68.25 & 31.75 & 100.00 \\
\hline
\end{tabular}

\section*{Statistics for Table of GROUP by HT}
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 6.4322 & 0.0112 \\
Likelihood Ratio Chi-Square & 1 & 6.4410 & 0.0112 \\
Continuity Adj. Chi-Square & 1 & 6.1344 & 0.0133 \\
Mantel-Haenszel Chi-Square & 1 & 6.4273 & 0.0112 \\
Phi Coefficient & & 0.0702 & \\
Contingency Coefficient & & 0.0700 & \\
Cramer's V & & 0.0702 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 467 \\
Left-sided \(\operatorname{Pr}<=\mathbf{F}\) & 0.9953 \\
Right-sided Pr >= F & 0.0066 \\
& \\
Table Probability (P) & 0.0019 \\
Two-sided Pr <= P & 0.0125 \\
\hline \multicolumn{2}{c}{ Sample Size = 1307 }
\end{tabular}

The FREQ Procedure
Compare to results in first paragraph in section and Figure 4, JAMA p. 2164
EDIC FOLLOWUP YEAR=07

Table of GROUP by HT
HT(Current
GROUP(TREATMENT Hypertension GROUP) (>=140/90))
\begin{tabular}{lrrr}
\begin{tabular}{l} 
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & & & \\
\hline \multicolumn{1}{c}{ Intensive Treatment } & 453 & 200 & 653 \\
& No & Yes & Total \\
& 34.71 & 15.33 & 50.04 \\
& 6937 & 30.63 & \\
Conventional Treatment & 393 & 43.57 & \\
& 30.11 & 259 & 652 \\
& 60.28 & 39.85 & 49.96 \\
& 46.45 & 56.43 & \\
Total & 846 & 459 & 1305 \\
& 64.83 & 35.17 & 100.00 \\
\hline
\end{tabular}

Statistics for Table of GROUP by HT
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 11.8384 & 0.0006 \\
Likelihood Ratio Chi-Square & 1 & 11.8630 & 0.0006 \\
Continuity Adj. Chi-Square & 1 & 11.4429 & 0.0007 \\
Mantel-Haenszel Chi-Square & 1 & 11.8294 & 0.0006 \\
Phi Coefficient & & 0.0952 & \\
Contingency Coefficient & & 0.0948 & \\
Cramer's V & & 0.0952 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 453 \\
Left-sided \(\operatorname{Pr}<=\mathbf{F}\) & 0.9998 \\
Right-sided Pr >= F & \(3.548 \mathrm{E}-04\) \\
\\
Table Probability (P) & \(1.240 \mathrm{E}-04\) \\
Two-sided Pr <= P & \(6.236 \mathrm{E}-04\) \\
\hline \multicolumn{2}{c}{ Sample Size = 1305 }
\end{tabular}

The FREQ Procedure
Compare to results in first paragraph in section and Figure 4, JAMA p. 2164
EDIC FOLLOWUP YEAR=08
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Table of GROUP by HT} \\
\hline GROUP(TREATMENT
GROUP) GROUP) & \multicolumn{2}{|l|}{HT(Current Hypertension ( \(>=140 / 90\) ))} & \\
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & No & Yes & Total \\
\hline \multirow[t]{4}{*}{Intensive Treatment} & 457 & 195 & 652 \\
\hline & 35.18 & 15.01 & 50.19 \\
\hline & 70.09 & 29.91 & \\
\hline & 54.21 & 42.76 & \\
\hline \multirow[t]{4}{*}{Conventional Treatment} & 386 & 261 & 647 \\
\hline & 29.72 & 20.09 & 49.81 \\
\hline & 59.66 & 40.34 & \\
\hline & 45.79 & 57.24 & \\
\hline \multirow[t]{2}{*}{Total} & 843 & 456 & 1299 \\
\hline & 64.90 & 35.10 & 100.00 \\
\hline
\end{tabular}

Statistics for Table of GROUP by HT
\begin{tabular}{lrrr}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 15.5134 & \(<.0001\) \\
Likelihood Ratio Chi-Square & 1 & 15.5539 & \(<.0001\) \\
Continuity Adj. Chi-Square & 1 & 15.0589 & 0.0001 \\
Mantel-Haenszel Chi-Square & 1 & 15.5015 & \(<.0001\) \\
Phi Coefficient & & 0.1093 & \\
Contingency Coefficient & & 0.1086 & \\
Cramer's V & & 0.1093 & \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Fisher's Exact Test } \\
\hline Cell (1,1) Frequency (F) & 457 \\
Left-sided Pr <= F & 1.0000 \\
Right-sided Pr >= F & \(5.113 \mathrm{E}-05\) \\
& \\
Table Probability (P) & \(1.971 \mathrm{E}-05\) \\
Two-sided Pr <= P & \(9.645 \mathrm{E}-05\) \\
\hline \multicolumn{2}{c}{ Sample Size = 1299 }
\end{tabular}

Compare to results in first paragraph in section and Figure 4, JAMA p. 2164
\begin{tabular}{rrllrr}
\hline Obs & EDICYEAR & \multicolumn{1}{c}{ GROUP } & HT & COUNT & PERCENT \\
\hline \(\mathbf{2}\) & 00 & Intensive Treatment & Yes & 74 & 10.9467 \\
\(\mathbf{4}\) & 00 & Conventional Treatment & Yes & 71 & 10.5498 \\
\(\mathbf{6}\) & 01 & Intensive Treatment & Yes & 110 & 16.8712 \\
\(\mathbf{8}\) & 01 & Conventional Treatment & Yes & 104 & 16.0494 \\
\(\mathbf{1 0}\) & 02 & Intensive Treatment & Yes & 121 & 18.5868 \\
\(\mathbf{1 2}\) & 02 & Conventional Treatment & Yes & 127 & 19.6291 \\
\(\mathbf{1 4}\) & 03 & Intensive Treatment & Yes & 122 & 18.7404 \\
\(\mathbf{1 6}\) & 03 & Conventional Treatment & Yes & 170 & 26.0736 \\
\(\mathbf{1 8}\) & 04 & Intensive Treatment & Yes & 138 & 21.3622 \\
\(\mathbf{2 0}\) & 04 & Conventional Treatment & Yes & 175 & 27.1318 \\
\(\mathbf{2 2}\) & 05 & Intensive Treatment & Yes & 151 & 23.3385 \\
\(\mathbf{2 4}\) & 05 & Conventional Treatment & Yes & 208 & 32.1981 \\
\(\mathbf{2 6}\) & 06 & Intensive Treatment & Yes & 186 & 28.4839 \\
\(\mathbf{2 8}\) & 06 & Conventional Treatment & Yes & 229 & 35.0153 \\
\(\mathbf{3 0}\) & 07 & Intensive Treatment & Yes & 200 & 30.6279 \\
\(\mathbf{3 2}\) & 07 & Conventional Treatment & Yes & 259 & 39.7239 \\
\(\mathbf{3 4}\) & 08 & Intensive Treatment & Yes & 195 & 29.9080 \\
\(\mathbf{3 6}\) & 08 & Conventional Treatment & Yes & 261 & 40.3400 \\
\hline
\end{tabular}```


[^0]:    ${ }^{1}$ In determining statistical significance of differences in group means or percentages, Wilcoxon rank-sum tests were used for continuous variables, and chi-square tests were used for categorical variables -- except for analyses with small cell sizes ( $<5$ subjects in any cell) when Fisher exact tests were used. There was one substantively unimportant discrepant result. Testing of the difference across groups in diabetes duration yielded a $P$-value of 0.15 while the corresponding published $P$-value is " $>0.99$ ". Archived data had means (SDs) of: 12.24 (4.89) for the intensive treatment condition and 11.87 (4.85) for the conventional treatment condition. Table 1 of the published results reports that both conditions have means of 12 years with SDs of 5 years.

[^1]:    ${ }^{2}$ The published analysis also reported that: "Of 550 participants originally assigned to conventional treatment with normoalbuminuria at both the beginning and at the end of the DCCT, 87 (15.8\%) of those at risk had microalbuminuria at the year 7 or 8 evaluation." Our preliminary analyses found 84 ( $15.4 \%$ ) of 527 at risk participants in conventional therapy with microalbuminuria at the year 7 or 8 evaluation. ${ }^{3}$ The published analysis reported for the comparable group receiving conventional therapy that 59 (9.4\%) of 630 developed clinical albuminuria. Our analysis found 55 ( $8.8 \%$ ) of 626 with clinical albuminuria.
    ${ }^{4}$ We obtained the published numerator ( $n=27$ ) after restricting the risk group to those with nonmissing serum creatinine data at each year of the EDIC study, resulting in a denominator of $\mathrm{N}=1038$ not 1349.

[^2]:    Prevalence of hypertension (defined as blood pressure $>140 / 90 \mathrm{~mm} \mathrm{Hg}$ ) at the end of the Diabetes Control and Complications Trial (DCCT) and during the Epidemiology of Diabetes Interventions and Complications (EDIC) study for participants in the intensive-vs conventional-treatment groups. The aggregate odds reduction with intensive vs conventional therapy of emergent hypertension during the EDIC study, adjusted for DCCT mean arterial pressure, was $40.4 \%$ ( $95 \%$ confidence interval, $33.7 \%-46.5 \%$; $P<.001$ ).

[^3]:    Writing Team for the DCCT-EDIC Research Group. (2003) Sustained Effect of Intensive Treatment of Type 1 Diabetes mellitus on Development and Progression of Diabetic Nephropathy: The Epidemiology of Diabetes Interventions and Complications (EDIC) Study. Journal of the American Medical Association, 290(16):2159-2167.

