Dataset Integrity Check (DSIC) for the HEALTHY Data Files

Reference paper:
NEJM 363(5) [2010 Jul 29]:443-53.

HEALTHY is a cluster randomized trial designed to investigate the effectiveness of an integrated intervention in middle schools in the reduction of risk factors for type 2 diabetes. The trial was conducted at 7 field centers in 42 middle schools, randomly assigned to intervention or control. Student recruitment and baseline data collection took place during the first semester of 6th grade (2006); the intervention was implemented the following semester (2007) and continued through $8^{\text {th }}$ grade (2007-2009). The intervention, designed to impact the environment and lifestyle choices of middle school children, was implemented at the school-level. As a partial check of the integrity of the HEALTHY baseline survey dataset archived in the NIDDK data repository, a dataset integrity check (DSIC) was performed to verify that selected published results from the HEALTHY study can be reproduced using the archived dataset. The DSIC consists of a small number of analyses performed to duplicate published results reported by the HEALTHY Study Group [1] in NEJM in July 2010. Results of the DSIC are described below.

The intent of this DSIC is to provide confidence that the data distributed by the NIDDK repository is a true copy of the study data. Our intent is not to assess the integrity of the statistical analyses reported by study investigators. As with all statistical analyses of complex datasets, complete replication of a set of statistical results should not be expected on a first exercise in secondary analysis. This occurs for a number of reasons including differences in the handling of missing data, restrictions on cases included in samples for a particular analysis, software coding used to define complex variables, etc. Experience suggests that most discrepancies can ordinarily be resolved by consultation with the study data coordinating center (DCC), however this process is labor-intensive for both DCC and Repository staff. We do not attempt to resolve minor or inconsequential discrepancies with published results or discrepancies that involve complex analyses, unless staff of the NIDDK Repository suspect that the observed discrepancy suggests that the dataset may have been corrupted in storage, transmission, or processing by repository staff. We do, however, document in the integrity check those instances in which our secondary analyses produced results that were not fully consistent with those reported in the target publication.

Archived Dataset Contents. The DCC submitted ten $S A S$ transport data files representing the raw data collected from 8 data collection forms, plus files with laboratory values and school randomization assignments. Electronic files of 7 of the 8 data collection forms also were submitted, with fields populated with the corresponding $S A S$ variable names. (The nutrition questionnaire was not submitted due to copyright issues.) The numerical value for check-box style categorical variables was noted to the lower right of the check-boxes on the collection forms.

Dataset deidentification. To prevent identification of participants in the study, the archived datasets were subjected to masking prior to submission to the Repository. All personal identifiers and dates were removed, and school ID was replaced by a randomly generated 2-digit masked ID number. Age at both baseline and end of study was removed. (The distribution of participant age
is described in the accompanying Repository Documentation provided by the DCC, Section 2.3.1). Variables with fine strata that might identify a particular individual were collapsed into wider groupings; e.g., race/ethnicity was coded as "White", "Black", "Hispanic", and "Other"; family history of diabetes was recoded as "first degree" if mother, father or sibling was reported having diabetes and as "second degree" if grandmother, grandfather, or aunt/uncle was reported having diabetes. The highest grade completed in school by the head of household was collapsed into "high school diploma or less", versus "some college or more".

Highest and lowest measures in anthropomorphic data were also collapsed to protect participant identity. Relevant to this analysis, participants with a BMI z-score of at most -0.50 were grouped together, as were those with a BMI z-score of at least 2.10. Also, participants with a waist circumference of at most 57 cm were grouped together, as were those with a waist circumference of at least 97 cm .

Due to deidentification procedures implemented in archived data, results of archived data analyses are expected to differ somewhat from published results. However, we would expect the conclusions of such data analysis to remain the same as what was previously published.

DSIC Analysis Methods. A portion of published results was replicated to ensure integrity of archived datasets.

First, school randomization assignment was matched to each participant via masked school ID number. Next, sixth grade level ('baseline') data were merged with eighth grade ('followup') data, by masked participant ID number, to produce the primary analysis cohort.

Next, distributions of gender, race/ethnicity, education of head of household, and family history of diabetes were calculated and compared to published breakdowns. Outcomes BMI $\geq 85^{\text {th }}$ percentile, $\mathrm{BMI} \geq 95^{\text {th }}$ percentile, fasting insulin $\geq 30 \mathrm{U} / \mathrm{ml}$, and fasting glucose $\geq 100 \mathrm{mg} / \mathrm{dl}$ were calculated for students in control and intervention groups, at baseline ($6^{\text {th }}$ grade) - and at followup ($8^{\text {th }}$ grade). Prevalences of outcomes were compared to published numbers. Outcome change scores, from baseline to followup, were calculated for control vs. interventions groups; change scores were compared to published numbers.

Generalized Linear Mixed Modeling (GLMM) was used to assess for treatment differences in bilevel outcomes, adjusting for school as a random effect. Odds ratios and p-values were compared to published numbers.

As previously described, participants with extreme values of BMI z-score or waist circumference were collapsed into broad groups. To retain these participants in the DSIC analysis, those coded as having a BMI z-score of -0.50 or less were assigned a z-score of exactly -0.50 ; those with BMI z-score of 2.10 or more were assigned a z-score of 2.10 . Likewise, participants with a waist circumference of 57 cm or less were assigned a waist circumference of exactly 57 cm ; those with a waist circumference of 97 or more were assigned a waist circumference of 97 cm . Means and standard deviations then were calculated for continuous outcomes: BMI z score, waist circumference, in addition to fasting insulin and fasting glucose. This was done for control versus intervention groups, at baseline and at followup. Mean change scores from baseline to
followup were also calculated. Mean scores of continuous outcomes, and mean change scores, were compared to published results. Mixed modeling was used to assess for treatment differences in continuous change scores, adjusting for school as a random effect. As indicated in the publication, fasting insulin was log-transformed prior to analysis, due to skewness in the data. P-values derived from mixed modeling were compared to published results.

All statistical analyses were conducted using SAS version 9.2 (Cary, NC).

DSIC Results: Demographics. Merging of raw datasets as described produced an analysis dataset with 4603 participants in 42 schools. These sample sizes match those of the publication. Distributions of gender, race/ethnicity, education of head of household, and family history of diabetes closely matched published breakdowns; any difference was in the decimal points, easily attributable to rounding. As described in the methods, age was not included in archived data, and could not be analyzed. [Table 1].

Table 1 (continues next page). Baseline Characteristics of the Students: Archived vs. Published Results
(published results extracted from Table 1 in Healthy Study Group, et al., NEJM 363(5), p. 446)

	Published	
	Prehived	
No. of students (\% within group)	$4603(100)$	$4603(100)$
Age (yr)	$11.3+0.6$	n.a.
Male sex (\%)	47.3	47.3
Race or ethnic group (\%)		
Hispanic	54.2	54.2
Black	18.0	18.0
White	19.3	19.3
Other	8.5	8.5
Highest education level attained		
by head of household (\%)*		
HS Diploma or less	51.7	51.7
\quad More than HS Diploma	48.3	48.3
Family history of diabetes (\%)**	17.6	17.6

n.a. $=$ Not Available in archived data

Table 1, continued. Baseline Characteristics of the Students: Archived vs. Published Results (published results extracted from Table 1 in Healthy Study Group, et al., NEJM 363(5), p. 446)

Intervention Group

Control Group

	Total		BMI <85th percentile		$\frac{\text { BMI }>=85 t h}{\text { percentile }}$		Total		BMI <85th percentile		$\frac{\text { BMI }>=85 \mathrm{th}}{\text { percentile }}$	
	Published	Archived										
No. of students (\% within group)	2307 (100)	2307 (100)	$\begin{aligned} & \hline 1147 \\ & (49.7) \\ & \hline \end{aligned}$	$\begin{gathered} 1147 \\ (49.7) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1160 \\ & (50.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1160 \\ & (50.3) \\ & \hline \end{aligned}$	2296 (100)	$\begin{aligned} & \hline 2296 \\ & (100) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1164 \\ & (50.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1164 \\ & (50.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 1132 \\ & (49.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1132 \\ & (49.3) \\ & \hline \end{aligned}$
Age (yr)	11.3 ± 0.5	n.a.	11.3 ± 0.5	n.a.	11.2 ± 0.5	ก.a.	11.3 ± 0.6	n.a.	11.3 ± 0.6	n.a.	11.3 ± 0.6	n.a.
Male sex (\%)	47.4	47.4	44.2	44.2	50.5	50.5	47.1	47.1	44.0	44.0	50.4	50.4
Race or ethnic group (\%)												
Hispanic	54.8	54.8	51.3	51.3	58.4	58.4	53.5	53.5	50.3	50.3	56.7	56.7
Black	20.3	20.3	22.2	22.2	18.4	18.4	15.7	15.7	15.3	15.3	16.2	16.2
White	17.1	17.0	18.6	18.6	15.5	15.5	21.6	21.6	24.4	24.4	18.6	18.6
Other	7.8	7.8	7.9	7.9	7.7	7.7	9.2	9.2	10.0	10.0	8.5	8.5
Highest education level attained by head of household (\%)*												
HS Diploma or less	51.8	51.8	49.7	49.6	53.9	53.9	51.6	51.5	48.2	48.2	54.9	54.9
More than HS	48.2	48.2	50.3	50.4	46.1	46.1	48.4	48.5	51.8	51.8	45.1	45.1
Family history of diabetes (\%)**	17.1	17.1	13.0	13.0	20.9	20.9	18.1	18.1	12.4	12.4	24.2	24.2

n.a. Not Available in archived data

* In archived data, responses are collapsed into two categories

In archived data, the variable is 'from first degree relative'

DSIC Results: Analysis of Outcomes. Prevalences of bi-level outcomes, i.e., $\mathrm{BMI} \geq 85^{\text {th }}$ percentile, BMI $\geq 95^{\text {th }}$ percentile, fasting insulin $\geq 30 \mathrm{U} / \mathrm{ml}$, and fasting glucose $\geq 100 \mathrm{mg} / \mathrm{dl}$, were calculated for students in control and intervention groups, at baseline ($6^{\text {th }}$ grade) and at followup (8 th grade). Change scores (from baseline to followup) were also calculated by treatment group. Calculated prevalences of bi-level outcomes were similar to published results. Differences were in the decimal places, easily attributable to rounding. Outcome-specific odds ratios and p-values for intervention versus control groups were approximately similar in archived versus published results. Differences in odds ratios and p-values could be attributed to differences in the application of GLMM methodology (e.g., method used to calculate the variance/covariance ratio, etc.), which were not specified in the publication. [Table 2]

Means and standard deviations were calculated for continuous outcomes, i.e., BMI z-score, waist circumference, fasting insulin, and fasting glucose, by control and intervention groups, at baseline and at followup. Mean change scores were also calculated. Slight differences between published and archived results in continuous outcomes were found. Variances tended to be smaller in archived results compared to those that were published. This is expected, due to the recoding of extreme anthropomorphic measures to a constant in archived data. Mean change scores also differed slightly between published and archived results; the largest discrepancy being the mean change in waist circumference among intervention students (3.5 cm in archived results, versus 4.6 cm in published results). Recoding/collapsing of extreme values in the archived dataset may also help explain these differences. P-values for differences in treatment effects differed between archived and published results; the differences in variances may help explain this. The discrepancy in p-values for the change in waist circumference was $\mathrm{p}=0.07$ (published) versus $\mathrm{p}=0.13$ (archived); for the change in BMI zscore, the discrepancy was $\mathrm{p}=0.04$ (published) versus $\mathrm{p}=0.08$ (archived). [Table 2]

Conclusion. With the replication of selected results, the analysis of archived data closely matches published results, allowing for rounding error and variations expected from data masking. We are confident there were no errors in the transmission of archived datasets from the DCC to the Repository. Approved data users are advised to interpret results of analysis of outcomes with caution (especially that of continuous data outcomes), due to the data masking procedures that were implemented in archived data.

Table 2. Baseline and End-of-Study Assessments of Students in Intervention and Control Schools: Archived vs. Published Results (published results extracted from Table 2 in Healthy Study Group, et al., NEJM 363(5), p. 448)

References

[1] HEALTHY Study Group, Foster GD, Linder B, Baranowski T, Cooper DM, Goldberg L, Harrell JS, Kaufman F, Marcus MD, Treviño RP, Hirst K. A school-based intervention for diabetes risk reduction. N Engl J Med. 363(5) [2010 Jul 29]: 443-53. Epub 2010 Jun 27.

Appendices

[1] Full Text of Healthy Study Group, et al., NEJM 363(5), provided to approved data requestors.
[2] SAS version 9.2 Log for programming code submitted for the replication of results in Healthy Study Group, et al., NEJM 363(5)
[3] SAS version 9.2 Output for programming code submitted for the replication of results in Healthy Study Group, et al., NEJM 363(5)

Attachment 1

"The full text of the article referenced will be provided to approved data requestors along with the data archived."

[^0]
Attachment 2

SAS version 9.2 Log for programming code submitted for the replication of results in Tables 1 and 2 of Healthy Study Group, et al., NEJM 363(5)

NOTE: Copyright (c) 2002-2008 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software 9.2 (TS2M2)
Licensed to RTI INTL MAIN, Site 70006746.
NOTE: This session is executing on the XP_PRO platform.
$\begin{array}{lrl}\text { NOTE: } & \text { SAS initialization used: } \\ \text { real time } & 3.36 & \text { seconds } \\ \text { cpu time } & 0.90 \text { seconds }\end{array}$
1 options ps=55 ls=78 nonumber formchar='|----|+\---+=|-^<>*' mprint orientation=portrait
1 ! ;
2
7 * comparison study paper: NEJM 363(5) [2010 Jul 29]:443-53 *
8 * Programmed by: S. Tan

10
11 libname in 'C:\Documents and Settings\stan\My
11 ! Documents \DATA\NIDDK\HEALTHY \backslash Official_Archive\HEALTHY_data';
NOTE: Libref IN was successfully assigned as follows:
Engine: V9
Physical Name: C:\Documents and Settings\stan $\backslash M y$
Documents \DATA\NIDDK $\backslash H E A L T H Y \backslash O f f i c i a l _A r c h i v e \backslash H E A L T H Y _d a t a ~$
12
13 proc format;
13 ! value bmige85f $1=' \mathrm{BMI}$ ge 85' 0='BMI lt 85';
NOTE: Format BMIGE85F has been output.
14 value bmige95f 1='BMI ge 95' 0='BMI lt 95';
NOTE: Format BMIGE95F has been output.
15

NOTE: PROCEDURE FORMAT used (Total process time):
real time 0.71 seconds
cpu time 0.04 seconds

16 data st2fam; set in.st2;
NOTE: Data file IN.ST2.DATA is in a format that is native to another host, or the file encoding
does not match the session encoding. Cross Environment Data Access will be
used, which
might require additional CPU resources and might reduce performance.
NOTE: There were 11218 observations read from the data set IN.ST2.
NOTE: The data set WORK.ST2FAM has 11218 observations and 7 variables.
NOTE: DATA statement used (Total process time):
real time 0.04 seconds
cpu time 0.01 seconds

17 data st3screen; set in.st3;
NOTE: Data file IN.ST3.DATA is in a format that is native to another host, or the file encoding
does not match the session encoding. Cross Environment Data Access will be
used, which
might require additional CPU resources and might reduce performance.
NOTE: There were 17896 observations read from the data set IN.ST3.
NOTE: The data set WORK.ST3SCREEN has 17896 observations and 27 variables.
NOTE: DATA statement used (Total process time):
real time 0.06 seconds
cpu time 0.04 seconds

18 data labdata; set in.cbl;
NOTE: Data file IN.CBL.DATA is in a format that is native to another host, or the file encoding does not match the session encoding. Cross Environment Data Access will be used, which
might require additional CPU resources and might reduce performance.
NOTE: There were 12360 observations read from the data set IN.CBL.
NOTE: The data set WORK.LABDATA has 12360 observations and 11 variables.
NOTE: DATA statement used (Total process time):
real time 0.03 seconds
cpu time 0.03 seconds

19 data rx; set in.rx; * school randomization assignment: has studentid variable *;
NOTE: Data file IN.RX.DATA is in a format that is native to another host, or the file encoding
does not match the session encoding. Cross Environment Data Access will be
used, which
might require additional CPU resources and might reduce performance.
20

NOTE: There were 42 observations read from the data set IN.RX.
NOTE: The data set WORK.RX has 42 observations and 2 variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

21
proc sort data=st2fam; by schoolid;
NOTE: There were 11218 observations read from the data set WORK.ST2FAM.
NOTE: The data set WORK.ST2FAM has 11218 observations and 7 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.03 seconds
cpu time 0.03 seconds

```
proc sort data=st3screen; by schoolid;
```

NOTE: There were 17896 observations read from the data set WORK.ST3SCREEN.
NOTE: The data set WORK.ST3SCREEN has 17896 observations and 27 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.03 seconds
cpu time 0.03 seconds

```
proc sort data=labdata; by schoolid;
```

NOTE: There were 12360 observations read from the data set WORK.LABDATA. NOTE: The data set WORK.LABDATA has 12360 observations and 11 variables. NOTE: PROCEDURE SORT used (Total process time): real time 0.03 seconds cpu time 0.01 seconds

24
25
26
NOTE: There were 42 observations read from the data set WORK.RX. NOTE: The data set WORK.RX has 42 observations and 2 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.06 seconds
cpu time 0.01 seconds

27
data st2fam; merge st2fam rx; by schoolid; run;
NOTE: There were 11218 observations read from the data set WORK.ST2FAM.
NOTE: There were 42 observations read from the data set WORK.RX.
NOTE: The data set WORK.ST2FAM has 11218 observations and 8 variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

28
data st3screen; merge st3screen rx; by schoolid; run;
NOTE: There were 17896 observations read from the data set WORK.ST3SCREEN.
NOTE: There were 42 observations read from the data set WORK.RX.
NOTE: The data set WORK.ST3SCREEN has 17896 observations and 28 variables.
NOTE: DATA statement used (Total process time):
real time 0.03 seconds
cpu time 0.03 seconds

29
data labdata; merge labdata rx; by schoolid; run;
NOTE: There were 12360 observations read from the data set WORK.LABDATA. NOTE: There were 42 observations read from the data set WORK.RX.
NOTE: The data set WORK.LABDATA has 12360 observations and 12 variables. NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

```
proc sort data=st2fam; by studentid;
```

NOTE: There were 11218 observations read from the data set WORK.ST2FAM. NOTE: The data set WORK.ST2FAM has 11218 observations and 8 variables. NOTE: PROCEDURE SORT used (Total process time):

$$
\text { real time } \quad 0.01 \text { seconds }
$$

$$
\text { cpu time } \quad 0.01 \text { seconds }
$$

32
33
34
35

> data g6_st2 97 st2 g8_st2; set st2fam; if grade 6 then output 96 st2; else if grade=7 then output 97 st2; else if grade=8 then output 98 _st2;

NOTE: There were 11218 observations read from the data set WORK.ST2FAM. NOTE: The data set WORK.G6_ST2 has 6288 observations and 8 variables. NOTE: The data set WORK.G7_ST2 has 0 observations and 8 variables. NOTE: The data set WORK.G8_ST2 has 4930 observations and 8 variables. NOTE: DATA statement used (Total process time): real time 0.03 seconds cpu time 0.01 seconds

36 proc sort data=st3screen; by studentid;

NOTE: There were 17896 observations read from the data set WORK.ST3SCREEN. NOTE: The data set WORK.ST3SCREEN has 17896 observations and 28 variables. NOTE: PROCEDURE SORT used (Total process time): real time 0.04 seconds
cpu time 0.03 seconds

37
38
39
40

```
data g6_st3 g7_st3 g8_st3; set st3screen;
    if grade=6 then output g6_st3;
    else if grade=7 then output g7_st3;
    else if grade=8 then output g8_st3;
```

NOTE: There were 17896 observations read from the data set WORK.ST3SCREEN. NOTE: The data set WORK.G6 ST3 has 6358 observations and 28 variables. NOTE: The data set WORK.G7 ST3 has 5225 observations and 28 variables. NOTE: The data set WORK.G8_ST3 has 6313 observations and 28 variables. NOTE: DATA statement used (Total process time):
real time 0.04 seconds
cpu time 0.03 seconds

41
proc sort data=labdata; by studentid;
NOTE: There were 12360 observations read from the data set WORK.LABDATA. NOTE: The data set WORK.LABDATA has 12360 observations and 12 variables. NOTE: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time $\quad 0.01$ seconds

42
43
44
45
46

```
data g6_lab g7_lab g8_lab; set labdata;
```

 if grade=6 then output g6_lab;
 else if grade \(=7\) then outpūt 97 lab;
 else if grade=8 then output g8_lab;
 NOTE: There were 12360 observations read from the data set WORK.LABDATA. NOTE: The data set WORK.G6_LAB has 6173 observations and 12 variables. NOTE: The data set WORK.G7_LAB has 0 observations and 12 variables.
NOTE: The data set WORK.G8_LAB has 6187 observations and 12 variables.
NOTE: DATA statement used (Total process time):
real time 0.03 seconds
cpu time 0.01 seconds

47 data baseline_f; merge g6_st3(in=in1 rename=(bmipct=bmipct_i bmiz=bmiz_i
47 ! waist=waist_i)
g6_st2 g6_lab(rename=(glucose=glucose_i insulin=insulin_i))
g8_st3(in=in2 keep=studentid bmipct b̄̄iz waist rename=($\overline{\mathrm{b}} \mathrm{mipct}=\mathrm{bmipct} \mathrm{f}$
49 bmiz=bmiz_f
49 ! waist=waist_f))
50 g8_lab(keēp=studentid glucose insulin rename=(glucose=glucose_f
insulin=insulin_f));
51 by studentid;
52 if in1 and in2; /* the final analysis dataset has students with both
grade 6 and
52 ! grade 8 data */
53 /* n=4603 */
54 * deidentification of data described on page 3 of documentation notes
provided by
54 ! the D.C.C. *;
55
$56 \quad * * * * * * * * * * * * * * *$ Coding of Baseline Measures (6th grade) *;
57 if $30<$ bmipct_i<85 or bmipct_i=1 then bmige85_i=0;
58 else if bmipct_i>=85 or bmipct_i=3 then bmige85_i=1;
59 if $30<$ bmipct_i<95 or bmipct_i=1 then bmige95_i=0;
60 else if bmípct_i>=95 or bmipct_i=3 then bmíge95_i=1;
61 format bmige85_i bmige85f. bmige95_i bmige95f.;
62
63 * recode values >upper limit, or <lower limit, to a constant equal to
exactly that
63 ! limit *;
64 * see forms for values of upper and lower limits *;
65 bmizscore_i=bmiz_i; if bmiz_i=3 then bmizscore_i=2.1; * upper limit
recoded *;
66 if bmiz_i=1 then bmizscore_i=-0.5; * lower limit recoded *;
67 waistcm_i=waist_i; if waist_ $\bar{i}=3$ then waistcm_i=97;* upper limit recoded
*;
68 if waist_i=1 then waistcm_i=57; * lower limit recoded *;
69
70
71 else if $\overline{0}<g l u c o s e _i<100$ then fastglul00_i=0;
72 if insulin_i>=30 thēn fastins30_i=1;
73 else if $\overline{0}$ <insulin_i<30 then fastins30_i=0;
74

NOTE: There were 6358 observations read from the data set WORK.G6_ST3.
NOTE: There were 6288 observations read from the data set WORK.G6_ST2.

April 29, 2011
NOTE: There were 6173 observations read from the data set WORK.G6_LAB.
NOTE: There were 6313 observations read from the data set WORK.G8_ST3.
NOTE: There were 6187 observations read from the data set WORK.G8_LAB.
NOTE: The data set WORK.BASELINE_F has 4603 observations and 51 variables.
NOTE: DATA statement used (Total process time):

$$
\begin{array}{ll}
\text { real time } & 0.04 \text { seconds } \\
\text { cpu time } & 0.04 \text { seconds }
\end{array}
$$

75 data baseline_f; set baseline_f;
76
77
78
79
80
81

82

```
****************** Coding of Final Measures (8th grade) *;
```

 if \(30<\) bmipct_f<85 or bmipct_f=1 then bmige85_f=0;
 else if bmipct_f>=85 or bmipct_f=3 then bmíge85_f=1;
 if \(30<\) bmipct_f<95 or bmipct_f=1 then bmige95_f=0;
 else if bmipct_f>=95 or bmipct_f=3 then bmige95_f=1;
 * recode values >upper limit, or $<l o w e r ~ l i m i t, ~ t o ~ a ~ c o n s t a n t ~ e q u a l ~ t o ~$
exactly that
82 ! limit *;
83 * see forms for values of upper and lower limits *;
84 bmizscore_f=bmiz_f; if bmiz_f=3 then bmizscore_f=2.1; * upper limit
recoded *;
85 if bmiz_f=1 then bmizscore_f=-0.5; * lower limit recoded *;
86 waistcm_f=waist_f; if waist_f=3 then waistcm_f=97;* upper limit recoded
*;
87 if waist_f=1 then waistcm_f=57; * lower limit recoded *;
88
89 if glucose_f>=100 then fastglul00_f=1;
90 else if $\overline{0}<g l u c o s e _f<100$ then fastglul00_f=0;
91 if insulin_f>=30 thēn fastins30_f=1;
92 else if $\overline{0}$ <insulin_f<30 then fástins30_f=0;
93
94
95
diffbmige85=bmige85_f-bmige85_i;
diffbmige95=bmige95_f-bmige95_i;
diffbmizscore=bmizscore_f-bmizscore_i;
diffwaistcm=waistcm_f-wāistcm_i;
diffglu100=fastglu100_f-fastglu100_i;
diffins30=fastins30_f-fastins30_i;
diffglu=glucose_f-glucose_i;
100
101
102 logins_i=log(insulin_i);
103 if insulin_f=0 then \bar{l} ogins_f=log(1.2); *lowest positive insulin value of
insulin_f*;
104 else logins_f=log(insulin_f);
105 diffins=logins_f-logins_i;
106 diffins_untrans=insulin_f-insulin_i;
107
NOTE: Missing values were generated as a result of performing an operation on missing values.

Each place is given by: (Number of times) at (Line): (Column).
19 at 97:24 221 at 98:26 230 at 99:24 221 at 100:20 142 at 102:12
103 at 104:17 229 at 105:19 229 at 106:28
NOTE: There were 4603 observations read from the data set WORK.BASELINE_F.
NOTE: The data set WORK.BASELINE_F has 4603 observations and 68 variables.
NOTE: DATA statement used (Total process time):
real time 0.03 seconds
cpu time 0.01 seconds

```
data baseline_f; set baseline_f;
    famhist=st2famhx1;
    if st2famhx1=9 then famhist=.;
    label bmige85_i='BMI ge 85th percentile, 6th gr'
            bmige95_i='BMI ge 95th percentile, 6th gr'
            famhist='1st deg fam hist diab'
            bmige85_f='BMI ge 85th percentile, 8th gr'
            bmige95_f='BMI ge 95th percentile, 8th gr'
            bmizscore_i='BMI z-score, 6th gr'
            waistcm_i='Waist circum in cm, 6th gr'
            fastglu100_i='Fasting Glucose >=100, 6th gr'
            fastins30_i='Fasting Insulin >=30, 6th gr'
            bmizscore_f='BMI z-score, 8th gr'
            glucose_i='Fasting Glucose, 6th gr'
            insulin_i='Fasting Insulin, 6th gr'
            glucose_f='Fasting Glucose, 8th gr'
            insulin_f='Fasting Insulin, 8th gr'
            waistcm_f='Waist circum in cm, 8th gr'
            fastglu\overline{100_f='Fasting Glucose >=100, 8th gr'}
            fastins30_f='Fasting Insulin >=30, 8th gr'
            diffbmige85='bmige85_f-bmige85_i'
            diffbmige95='bmige95_f-bmige95_i'
            diffbmizscore='bmizscore_f-bmizscore_i'
            diffwaistcm='waistcm_f-waistcm_i'
            diffglu100='fastglu100_f-fastglul00_i'
            diffins30='fastins30_f-fastins30_i'
            diffglu='glucose_f-g\\ucose_i'
            logins_i='Natura\overline{l Log Trans}form of insulin, 6th gr'
            logins_f='Natural Log Transform of insulin, 8th gr'
            diffins='logins_f-logins_i'
            diffins_untrans='insulin_f-insulin_i';
    run;
```

NOTE: There were 4603 observations read from the data set WORK.BASELINE_F. NOTE: The data set WORK.BASELINE_F has 4603 observations and 69 variablés. NOTE: DATA statement used (Total process time):

real time	0.01 seconds
cpu time	0.01 seconds

140
141
proc contents position; title "Variables in HEALTHY DSIC Analysis
Dataset"; run;
NOTE: PROCEDURE CONTENTS used (Total process time):
real time $\quad 0.28$ seconds
cpu time 0.06 seconds
NOTE: The PROCEDURE CONTENTS printed pages 1-5.
142
143

144
145
146
NOTE: There were 4603 observations read from the data set WORK.BASELINE_F.
NOTE: The PROCEDURE FREQ printed page 6.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.03 seconds
cpu time 0.01 seconds

147
proc freq; tables st3gend race_eth bmige85_i st2edu famhist; run;
NOTE: There were 4603 observations read from the data set WORK.BASELINE_F.
NOTE: The PROCEDURE FREQ printed page 7.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.18 seconds
cpu time 0.03 seconds

148
149
proc sort; by assign;
NOTE: There were 4603 observations read from the data set WORK.BASELINE_F. NOTE: The data set WORK.BASELINE_F has 4603 observations and 69 variables. NOTE: PROCEDURE SORT used (Total process time):
real time 0.03 seconds
cpu time 0.03 seconds

150
proc freq; by assign; tables (st3gend race_eth st2edu famhist)* bmige85_i; run;

NOTE: There were 4603 observations read from the data set WORK.BASELINE_F.
NOTE: The PROCEDURE FREQ printed pages 8-15.
NOTE: PROCEDURE FREQ used (Total process time):

$$
\text { real time } \quad 0.45 \text { seconds }
$$

cpu time 0.03 seconds

151
152
153
154
155
156

```
            ************************************;
Title To replicate selected results in Table 2 ;
    *************************************;
proc freq; by assign; tables bmige85_i bmige95_i fastglul00_i fastins30_i bmige85_f bmige95_f fastglul00_f fastins30_f; run;
```

NOTE: There were 4603 observations read from the data set WORK.BASELINE_F.
NOTE: The PROCEDURE FREQ printed pages 16-19.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.10 seconds
cpu time 0.01 seconds

157 proc means maxdec=4 n mean std stderr; class assign; var bmizscore_i bmizscore_f; run;

NOTE: There were 4603 observations read from the data set WORK.BASELINE_F.
NOTE: The PROCEDURE MEANS printed page 20.
NOTE: PROCEDURE MEANS used (Total process time):
real time 0.03 seconds
cpu time 0.03 seconds

158 proc means maxdec=4 n mean std stderr; class assign; var waistcm_i
waistcm_f; run;
NOTE: There were 4603 observations read from the data set WORK.BASELINE_F.
NOTE: The PROCEDURE MEANS printed page 21.
NOTE: PROCEDURE MEANS used (Total process time):
real time 0.09 seconds
cpu time 0.01 seconds

159 proc means maxdec=3 n mean std stderr; class assign; var glucose_i
insulin_i glucose_f
159 ! insulin_f; run;
NOTE: There were 4603 observations read from the data set WORK.BASELINE_F.
NOTE: The PROCEDURE MEANS printed page 22.
NOTE: PROCEDURE MEANS used (Total process time): real time 0.03 seconds cpu time 0.01 seconds

162
163
164
165
166
167
168
169
170
171

```
    ***************************************;
Title To replicate analyses of selected continuous outcomes in Table 2 ;
    ***************************************;
proc mixed data=baseline_f;
    class studentid schoolíd assign;
    model diffbmizscore=assign bmizscore_i/solution ddfm=bw;
        random int/sub=schoolid;
        lsmeans assign /diff=control('0') cl; run;
```

WARNING: Class levels for studentid are not printed because of excessive size. NOTE: Convergence criteria met.
NOTE: The PROCEDURE MIXED printed pages 24-26.

April 29, 2011
NOTE: PROCEDURE MIXED used (Total process time):
real time 0.84 seconds
cpu time 0.09 seconds

172
173
174
175
176

```
proc mixed data=baseline_f;
    class studentid schoolíd assign;
    model diffwaistcm=assign waistcm_i/solution ddfm=bw;
    random int/sub=schoolid;
    lsmeans assign /diff=control('0') cl; run;
```

WARNING: Class levels for studentid are not printed because of excessive size. NOTE: 19 observations are not included because of missing values.
NOTE: Convergence criteria met.
NOTE: The PROCEDURE MIXED printed pages 27-29.
NOTE: PROCEDURE MIXED used (Total process time):
real time 0.35 seconds
cpu time 0.04 seconds

177
178
179
180
181

```
proc mixed data=baseline_f;
    class studentid schoolíd assign;
    model diffins=assign logins_i/solution ddfm=bw;
    random int/sub=schoolid;
    lsmeans assign /diff=control('0') cl; run;
```

WARNING: Class levels for studentid are not printed because of excessive size. NOTE: 229 observations are not included because of missing values.
NOTE: Convergence criteria met.
NOTE: The PROCEDURE MIXED printed pages 30-32.
NOTE: PROCEDURE MIXED used (Total process time):
real time 0.15 seconds
cpu time 0.07 seconds

182

```
proc mixed data=baseline_f;
    class studentid schooli}d assign
    model diffglu=assign glucose_i/solution ddfm=bw;
    random int/sub=schoolid;
    lsmeans assign /diff=control('0') cl; run;
```

WARNING: Class levels for studentid are not printed because of excessive size. NOTE: 221 observations are not included because of missing values.
NOTE: Convergence criteria met.
NOTE: The PROCEDURE MIXED printed pages 33-35.
NOTE: PROCEDURE MIXED used (Total process time):
real time 0.35 seconds
cpu time 0.07 seconds

187
188
189

[^1]April 29, 2011

NOTE: There were 4603 observations read from the data set WORK.BASELINE_F.
NOTE: The data set WORK.LONGF has 9206 observations and 74 variables.
NOTE: DATA statement used (Total process time):
real time 0.04 seconds
cpu time 0.01 seconds

```
data longf; set longf;
    time=i-1; run;
```

NOTE: There were 9206 observations read from the data set WORK.LONGF.
NOTE: The data set WORK.LONGF has 9206 observations and 75 variables.
NOTE: DATA statement used (Total process time):
real time 0.21 seconds
cpu time 0.06 seconds

207
208
time i
208 ! diffbmige85; run; */
209
210
211
212
213
214
215

```
data longf; set baseline_f;
    array ge85s[2] bmige85_i bmige85_f;
    array ge95s[2] bmige95_i bmige95_f;
    array fgl00s[2] fastglul00_i fastglul00_f;
    array fi30s[2] fastins30_i fastins30_f;
    do i=1 to 2;
        bmige85=ge85s[i];
            bmige95=ge95s[i];
fastglu100=fg100s[i];
fastins30=fi30s[i];
            output;
        end;
        format bmige85 bmige95 fastglu100 fastins30;
run;
```

real time	0.70 seconds
cpu time	0.54 seconds

```
PROC GLIMMIX DATA=longf ;
    CLASS studentid schoolid time;
    MODEL bmige95(EVENT=LAST)=assign bmige95_i time /
            DDFM=bw DIST=BINARY cl SOLUTION HTYPE=1,3;
        random int /subject=schoolid;
        run;
```

WARNING: Class levels for studentid are not printed because of excessive size.
NOTE: The GLIMMIX procedure is modeling the probability that bmige95='1'.
NOTE: Convergence criterion (PCONV=1.11022E-8) satisfied.
NOTE: Estimated G matrix is not positive definite.
NOTE: The covariance matrix is the zero matrix.
NOTE: The PROCEDURE GLIMMIX printed pages 39-41.
NOTE: PROCEDURE GLIMMIX used (Total process time):
real time 0.87 seconds
cpu time 0.51 seconds

222
223
224
225
226
227

PROC GLIMMIX DATA=longf ;
CLASS studentid schoolid time;
MODEL fastglul00 (EVENT=LAST) =assign fastglul00_i time /
DDFM=bw DIST=BINARY cl SOLUTION HTYPE=1,3;
random int/subject=schoolid;
run;

WARNING: Class levels for studentid are not printed because of excessive size. NOTE: Some observations are not used in the analysis because of: missing response values ($n=238$),
missing fixed effects ($\mathrm{n}=270$), missing random effects ($\mathrm{n}=270$), missing subject
effects ($n=270$).
NOTE: The GLIMMIX procedure is modeling the probability that fastglu100='1'.
NOTE: Convergence criterion (PCONV=1.11022E-8) satisfied.
NOTE: The PROCEDURE GLIMMIX printed pages 42-44.
NOTE: PROCEDURE GLIMMIX used (Total process time):
real time $\quad 0.65$ seconds
cpu time 0.51 seconds

228
229
230
231
232
233

```
PROC GLIMMIX DATA=longf ;
    CLASS studentid schoolid time;
    MODEL fastins30(EVENT=LAST)=assign fastins30_i time /
            DDFM=bw DIST=BINARY cl SOLUTION HTYPE=1,3;
            random int/subject=schoolid;
            run;
```

April 29, 2011
WARNING: Class levels for studentid are not printed because of excessive size. NOTE: Some observations are not used in the analysis because of: missing response values ($n=246$),
missing fixed effects ($\mathrm{n}=284$), missing random effects ($\mathrm{n}=284$), missing subject effects ($\mathrm{n}=284$).
NOTE: The GLIMMIX procedure is modeling the probability that fastins30='1'.
NOTE: Convergence criterion (PCONV=1.11022E-8) satisfied.
NOTE: The PROCEDURE GLIMMIX printed pages 45-47.
NOTE: PROCEDURE GLIMMIX used (Total process time):
real time 0.70 seconds
cpu time 0.54 seconds

234
235
236
237
NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414
NOTE: The SAS System used:
real time $\quad 13.00$ seconds
cpu time 4.68 seconds

Attachment 3

SAS version 9.2 Output for programming code submitted for the replication of results in Tables 1 and 2 of Healthy Study Group, et al., NEJM 363(5)

Variables in HEALTHY DSIC Analysis Dataset
18:50 Friday, April 29, 2011

The CONTENTS Procedure

Data Set Name	WORK.BASELINE_F	Observations	4603
Member Type	DATA	Variables	69
Engine	V9	Indexes	0
Created	Friday, April 29, 2011 06:50:40 PM	Observation Length	560
Last Modified	Friday, April 29, 2011 06:50:40 PM	Deleted Observations	0
Protection		Compressed	NO
Data Set Type		Sorted	NO

bmizscore_i	Num	8
chol	Num	8
dbp	Num	8
diffbmige85	Num	8
diffbmige95	Num	8
diffbmizscore	Num	8
diffglu	Num	8
diffglul00	Num	8
diffins	Num	8
diffins30	Num	8

BMI z-score, 6th gr
Cholesterol
Diastolic Blood Pressure
bmige85_f-bmige85_i
bmige95_f-bmige95_i
bmizscore f-bmizscore i
glucose_f-glucose_i
fastglu100_f-fastglu100_i
logins_f-lōgins_i
fastins30_f-fastins30_i

The CONTENTS Procedure

Alphabetic List of Variables and Attributes

Variable	Type	Len
diffins_untrans	Num	8
diffwaistcm	Num	8
famhist	Num	8
fastglu100_f	Num	8
fastglu100_i	Num	8
fastins30_f	Num	8
fastins30_i	Num	8
glucose f	Num	8
glucose_i	Num	8
grade	Num	8
hbalc	Num	8
hdl_chl	Num	8
height	Num	8
insulin_f	Num	8
insulin_i	Num	8
ldl_chl	Num	8
logins_f	Num	8
logins_i	Num	8
race_eth	Num	8
s.bp	Num	8
schoolid	Num	8
st2comp	Num	8
st2edu	Num	8
st2famhx1	Num	8
st2famhx2	Num	8
st3cuff	Num	8
st3fast	Num	8
st3gend	Num	8
st3infall6	Num	8
st3infall7	Num	8
st3infall8	Num	8
st3inspr6	Num	8
st3inspr7	Num	8
st3inspr8	Num	8
st3reas 1	Num	8
st3reas2	Num	8

Format	Label
	insulin_f-insulin_i
	waistcm_f-waistcm_i
	1st deg fam hist diab
	Fasting Glucose >=100, 8th gr
	Fasting Glucose >=100, 6th gr
	Fasting Insulin $>=30$, 8th gr
	Fasting Insulin >=30, 6th gr
	Fasting Glucose, 8th gr
	Fasting Glucose, 6th gr
BEST12.	Grade
	HbA1c
	HDL Cholesterol
BEST12.	Height
	Fasting Insulin, 8th gr
	Fasting Insulin, 6th gr
	LDL Cholesterol
	Natural Log Transform of insulin, 8th gr
	Natural Log Transform of insulin, 6th gr
BEST12.	Race/Ethnicity
BEST12.	Systolic Blood Pressure
BEST12.	School ID
	Information completed by
	Highest household education
	First degree family history of diabetes
	Second degree family history of diabetes
BEST12.	Cuff Size
BEST12.	Fasting Status
BEST12.	Gender
	In School Fall 6th Grade
	In School Fall 7th Grade
	In School Fall 8th Grade
	In School Spring 6th Grade
	In School Spring 7th Grade
	In School Spring 8th Grade
	Parent Refused On-site
	Child Refused On-site

insulin_f-insulin_i
Ist deg fam hist diab
Fasting Glucose >=100, 8th gr
asting Glucose >=100, 6th gr

Fasting Insulin >=30, 6th gr
Fasting Glucose, 8th gr
ing Glucose, 6th gr

HDL Cholesterol

Fasting Insulin, 8th gr
Fasting Insulin, 6th gr
DL Cholesterol
Natural
Race/Ethnicity
Systolic Blood Pressure

Information completed by
First degree family history of diabetes
Second degree family history of diabetes
Size

Gender
In School Fall 6th Grade
7h Grade
S Shool Fall 8th Grade
In School Spring 7th Grade
In School Spring 7th Grade

Refused On-site
Child Refused On-site
st 3 reas 3
st 3 reas 4
st $3 r e a s 5$
st 3 succ
st3tries
studentid
trig
vldl_chl
waist_f
waist_i

Num
Num 8
Num 8
Num 8
Num 8
Char 12
Num 8
Num 8
Num 8
Num
could Not Palpate Vein
3 Tries With No Success
Other Reason
Blood Draw Successful
Number of Blood Draw Tries
Student ID
Triglycerides
VLDL Cholesterol
BEST12. Waist
BEST12. Waist

The CONTENTS Procedure

Variables in Creation Order

Variable
schoolid
studentid
grade
st3fast
st3gend
race_eth
st3infall6
st3inspr6
st3infall7
st3inspr7
st3infall8
st3inspr8
st3tries
st3succ
st3reas1
st3reas2
st3reas3
st3reas4
st3reas5
height
weight
bmipct_i
bmiz_i
waist i
st3cuff
sbp
dbp
assign
st2comp
st2famhx1
st2famhx2
st2edu
glucose_i
insulin_i
hbalc
chol

Type	Len	Format	Label
Num	8	BEST12.	School ID
Char	12		Student ID
Num	8	BEST12.	Grade
Num	8	BEST12.	Fasting Status
Num	8	BEST12.	Gender
Num	8	BEST12.	Race/Ethnicity
Num	8		In School Fall 6th Grade
Num	8		In School Spring 6th Grade
Num	8		In School Fall 7th Grade
Num	8		In School Spring 7th Grade
Num	8		In School Fall 8th Grade
Num	8		In School Spring 8th Grade
Num	8	BEST12.	Number of Blood Draw Tries
Num	8	BEST12.	Blood Draw Successful
Num	8		Parent Refused On-site
Num	8		Child Refused On-site
Num	8		Could Not Palpate Vein
Num	8		3 Tries With No Success
Num	8		Other Reason
Num	8	BEST12.	Height
Num	8	BEST12.	Weight
Num	8	BEST12.	BMI Percentile
Num	8		BMI Z-score
Num	8	BEST12.	Waist
Num	8	BEST12.	Cuff Size
Num	8	BEST12.	Systolic Blood Pressure
Num	8	BEST12.	Diastolic Blood Pressure
Num	8	BEST12.	Randomization Assignment
Num	8		Information completed by
Num	8		First degree family history of diabetes
Num	8		Second degree family history of diabetes
Num	8		Highest household education
Num	8		Fasting Glucose, 6th gr
Num	8		Fasting Insulin, 6th gr
Num	8		HbA1c
Num	8		Cholesterol

37	hdl_chl	Num	8
38	ldl_chl	Num	8
39	vldl_chl	Num	8
40	trig	Num	8
41	bmipct_f	Num	8
42	bmiz_f	Num	8
43	waist_f	Num	8
44	glucose_f	Num	8
45	insulin_f	Num	8
46	bmige85 i	Num	8

```
    HDL Cholesterol
    LDL Cholesterol
    VLDL Cholesterol
    Triglycerides
    BMI Percentile
    BMI Z-score
    Waist
    Fasting Glucose, 8th gr
    Fasting Insulin, 8th gr
BMIGE85F. BMI ge 85th percentile, 6th gr
```

Variables in HEALTHY DSIC Analysis Dataset

The CONTENTS Procedure

Variables in Creation Order

47	bmige95_i	Num	8
48	bmizscore_i	Num	8
49	waistcm_i	Num	8
50	fastgluló_i	Num	8
51	fastins30_i	Num	8
52	bmige85_f	Num	8
53	bmige95_f	Num	8
54	bmizscore_f	Num	8
55	waistcm_f	Num	8
56	fastgluloo_f	Num	8
57	fastins30_f	Num	8
58	diffbmige85	Num	8
59	diffbmige95	Num	8
60	diffbmizscore	Num	8
61	diffwaistcm	Num	8
62	diffglul00	Num	8
63	diffins30	Num	8
64	diffglu	Num	8
65	logins_i	Num	8
66	logins_f	Num	8
67	diffins	Num	8
68	diffins_untrans	Num	8
69	famhist	Num	8

```
Format Label
BMIGE95F. BMI ge 95th percentile, 6th gr
    BMI z-score, 6th gr
    Waist circum in cm, 6th gr
    Fasting Glucose >=100, 6th gr
    Fasting Insulin >=30, 6th gr
    BMI ge 85th percentile, 8th gr
    BMI ge 95th percentile, 8th gr
    BMI z-score, 8th gr
    Waist circum in cm, 8th gr
    Fasting Glucose >=100, 8th gr
    Fasting Insulin >=30, 8th gr
bmige85_f-bmige85_i
bmige95-f-bmige95-i
bmizscore f-bmizscore i
waistcm_f-waistcm_i
fastglu100 f-fastglu100 i
fastins30_\overline{f-fastins30_i}
glucose f-glucose i
Natural Log Transform of insulin, 6th gr
Natural Log Transform of insulin, 8th gr
logins_f-logins_i
insulin f-insulin i
1st deg}\mp@subsup{}{}{-}\mathrm{ fam hist }\overline{\textrm{d}
Label
BMI ge 95th percentile, 6th gr
BMI z-score, 6th gr
aist circum in cm, 6th gr
Fasting Glucose \(>=100\), 6th gr
BMI ge 85th percentile, 8th gr
BMI ge 95th percentile, 8th gr
BMI z-score, 8th gr
Waist circum in cm, 8th gr
Fasting Glucose \(>=100,8\) th \(g\)
Fasting Insulin \(>=30\), 8th \(g r\)
bmige85_f-bmige85_i
bmige95_f-bmige95i
bmizscore_f-bmizscore_i
waistcm_f-waistcm_i
Eastglu100 f-fastglu100 i
fastins30_f-fastins30_i
glucose I-glucose 1
Natural Log Transform of insulin, 6th gr
atural Log Transform of insulin, 8th gr
insulī f-insulin
1st deg \({ }^{-}\)fam hist \(\overline{\mathrm{d}}\) iab
```

To replicate results in Table 1

The FREQ Procedure

Table of assign by bmige85_i
assign (Randomization Assignment)
bmige85 i(BMI ge 85th percentile, 6th gr)

The FREQ Procedure
Gender

st3gend	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	2175	47.25	2175	47.25
2	2428	52.75	4603	100.00

Race/Ethnicity

race_eth	Frequency	Percent	Cumulative Frequency	Cumulative Percent
--				
1	2493	54.16	2493	54.16
2	830	18.03	3323	72.19
3	888	19.29	4211	91.48
4	392	8.52	4603	100.00

BMI ge 85th percentile, 6th gr

bmige85_i	Frequency	Percent	Cumulative Frequency	Cumulative Percent
BMI lt 85	2311	50.21	2311	50.21
BMI ge 85	2292	49.79	4603	100.00

st2edu	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	2310	51.67	2310	51.67
2	2161	48.33	4471	100.00

1st deg fam hist diab

famhist	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	597	17.61	597	17.61
2	2794	82.39	3391	100.00

Randomization Assignment=0

The FREQ Procedure
Table of st3gend by bmige85_i
st 3 gend (Gender)
omige85_i(BMI ge 85th percentile, 6th gr)

Frequency
Percent |
Row Pct |
Col Pct |BMI lt 8|BMI ge 8| Total
$|5 \quad| 5 \quad \mid$

1 | 512 | 570 | 1082
| 22.30 | 24.83 | 47.13
| 47.32 | 52.68 |
| 43.99 | 50.35 |
2 | 652 | 562 |
1214
$|28.40| 24.48 \mid 52.87$
| 53.71 | 46.29 |
| 56.01 | 49.65 |

---------+----------------+			
Total	1164	1132	2296

Randomization Assignment=0

The FREQ Procedure
Table of race_eth by bmige85_i
race_eth (Race/Ethnicity)
bmige85_i(BMI ge 85th percentile, 6th gr)

Randomization Assignment=0
The FREQ Procedure
Table of st2edu by bmige85_i
st2edu(Highest household education)
bmige85 i(BMI ge 85th percentile, 6th gr)

Frequency
Percent |
Row Pct |
Col Pct ${ }^{\mid \mathrm{BMI}}$ lt $8 \mid \mathrm{BMI}$ ge 8| Total

Frequency Missing $=70$

Randomization Assignment=0

The FREQ Procedure
Table of famhist by bmige85_i
famhist(1st deg fam hist diab)
bmige85_i(BMI ge 85th percentile, 6th gr)

Frequency
Percent |
Row Pct |
Col Pct ${ }^{\mid B M I}$ lt $8 \mid \mathrm{BMI}$ ge 8| Total

308
$\mid 35.06$ | 64.94 |
| 12.40 | 24.18 |
2 - 627
| 44.94 | 36.93 | 81.86
| 54.89 | 45.11 |
| 87.60 | 75.82 |

| ---------+--------+--------+ | | | |
| :--- | ---: | ---: | ---: | ---: |
| Total | 871 | 827 | 1698 |

Frequency Missing $=598$

Randomization Assignment=1

The FREQ Procedure
Table of st3gend by bmige85_i
st 3 gend (Gender)
omige85_i(BMI ge 85th percentile, 6th gr)

Frequency
Percent |
Row Pct |
Col Pct ${ }_{\mid}^{\mid B M}$ lt $8 \mid \mathrm{BMI}$ ge 8| Total

	1	507	586	1093
		21.98	25.40	47.38
		46.39	53.61	
		44.20	50.52	
	2	640	574	1214
		27.74	24.88	52.62
		52.72	47.28	
		55.80	49.48	
Total		1147	1160	2307
		49.72	50.28	100.00

Randomization Assignment=1

The FREQ Procedure
Table of race_eth by bmige85_i
race_eth(Race/Ethnicity)
bmige85_i(BMI ge 85th percentile, 6th gr)

To replicate results in Table 1

Randomization Assignment=1

The FREQ Procedure

Table of st2edu by bmige85_i
st2edu(Highest household education)
bmige85 i(BMI ge 85th percentile, 6th gr)

Frequency
Percent |
Row Pct |
Col Pct ${ }_{\mid}^{\mid B M}$ lt $8 \mid \mathrm{BMI}$ ge 8| Total
$\mid 5151$

1 | 552 | 611 | 1163
| 24.59 | 27.22 | 51.80
| 47.46 | 52.54 |
| 49.64 | 53.93 |
2 | 560 | 522 |
1082
| 24.94 | 23.25 | 48.20
| 51.76 | 48.24 |
| 50.36 | 46.07 |
$\begin{array}{lccr}\text {----------+---------+--------+ } & \\ \text { Total } & 1112 & 1133 & 2245\end{array}$

Frequency Missing $=62$

Randomization Assignment=1

The FREQ Procedure
Table of famhist by bmige85_i
famhist(1st deg fam hist diab)
bmige85_i(BMI ge 85th percentile, 6th gr)

Frequency
Percent |
Row Pct |
Col Pct ${ }_{\mid}^{\mid B M}$ lt $8 \mid \mathrm{BMI}$ ge 8| Total

1	106	183

289
| 6.26 | 10.81 | 17.07
| 36.68 | 63.32 |
| 12.96 | 20.91 |
2 | 712 | 692 |
1404
| 42.06 | 40.87 | 82.93
| 50.71 | 49.29 |
| 87.04 | 79.09 |

---------+---------------			
Total	818	875	1693
	48.32	51.68	100.00

Frequency Missing $=614$

Randomization Assignment=0
The FREQ Procedure
BMI ge 85th percentile, 6th gr

bmige85_i	Frequency	Percent	Cumulative Frequency	Cumulative Percent
BMI lt 85	1164	50.70	1164	50.70
BMI ge 85	1132	49.30	2296	100.00

BMI ge 95th percentile, 6th gr

bmige95_i	Frequency	Percent	Cumulative Frequency	Cumulative Percent

BMI lt 95	1597	69.56	1597	69.56
BMI ge 95	699	30.44	2296	100.00

Fasting Glucose >=100, 6th gr

fastglu100_i	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	1870	83.74	1870	83.74
1	363	16.26	2233	100.00

Fasting Insulin $>=30$, 6th gr

		Cumulative	Cumulative	
fastins30_i	Frequency	Percent	Frequency	Percent

BMI ge 85th percentile, 8th gr

bmige85_f	Frequency	Percent	Cumulative Frequency	Cumulative
Percent				

To replicate selected results in Table 2 18:50 Friday, April 29, 2011
Randomization Assignment=0
The FREQ Procedure
BMI ge 95th percentile, 8th gr

bmige95_f	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	1686	73.43	1686	73.43
1	610	26.57	2296	100.00

Fasting Glucose >=100, 8th gr

		Frequency	Percent	Cumulative Frequency
fastglul00_f	Fremulative	Percent		

Fasting Insulin $>=30$, 8 th $g r$

		Cumulative	Cumulative	
fastins30_f	Frequency	Percent	Frequency	Percent

Randomization Assignment=1
The FREQ Procedure
BMI ge 85th percentile, 6th gr

bmige85_i	Frequency	Percent	Cumulative Frequency	Cumulative Percent
--				
BMI lt 85	1147	49.72	1147	49.72
BMI ge 85	1160	50.28	2307	100.00

BMI ge 95th percentile, 6th gr

bmige95_i	Frequency	Percent	Cumulative Frequency	Cumulative Percent
--				
BMI lt 95	1613	69.92	1613	69.92
BMI ge 95	694	30.08	2307	100.00

Fasting Glucose >=100, 6th gr

fastglu100_i	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	1882	84.21	1882	84.21
1	353	15.79	2235	100.00

Fasting Insulin $>=30$, 6th gr

		Cumulative	Cumulative	
fastins30_i	Frequency	Percent	Frequency	Percent

BMI ge 85th percentile, 8th gr

bmige85_f	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	1250	54.18	1250	54.18
1	1057	45.82	2307	100.00

To replicate selected results in Table 2 18:50 Friday, April 29, 2011
Randomization Assignment=1
The FREQ Procedure
BMI ge 95th percentile, 8th gr

bmige95_f	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	1740	75.42	1740	75.42
1	567	24.58	2307	100.00

Fasting Glucose >=100, 8th gr

		Frequency	Percent	Cumulative Frequency
fastglul00_f	Frumulative			
Percent				

Fasting Insulin $>=30$, 8th gr

		Cumulative	Cumulative	
fastins30_f	Frequency	Percent	Frequency	Percent

To replicate selected results in Table 2 18:50 Friday, April 29, 2011
The MEANS Procedure

Randomization Assignment	$\begin{array}{r} \mathrm{N} \\ \text { Obs } \end{array}$	Variable	Label		N	Mean	Std Dev
0	2296	bmizscore i	BMI z-score,	6 th gr	2296	0.9161	0.9221
		bmizscore_f	BMI z-score,	8th gr	2296	0.8853	0.8810

Randomization Assignment	$\begin{array}{r} \mathrm{N} \\ \text { Obs } \end{array}$	Variable	Label		Std Error
0	2296	bmizscore i	BMI z-score,	6 th gr	0.0192
		bmizscore_f	BMI z-score,	8th gr	0.0184
1	2307	bmizscore_i	BMI z-score,	6 th gr	0.0190
		bmizscore_f	BMI z-score,	8th gr	0.0182

To replicate selected results in Table 2 18:50 Friday, April 29, 2011
The MEANS Procedure

The MEANS Procedure

Randomization Assignment	$\begin{array}{r} \mathrm{N} \\ \text { Obs } \end{array}$	Variable	Label	Std Error
0	2296	glucose_i	Fasting Glucose, 6th gr	0.143
		insulin_i	Fasting Insulin, 6th gr	0.261
		glucose_f	Fasting Glucose, 8th gr	0.167
		insulin_f	Fasting Insulin, 8th gr	0.281
1	2307	glucose_i	Fasting Glucose, 6th gr	0.139
		insulin_i	Fasting Insulin, 6th gr	0.225
		glucose_f	Fasting Glucose, 8th gr	0.181
		insulin_f	Fasting Insulin, 8th gr	0.321

The MEANS Procedure

Randomization Assignment	$\begin{array}{r} \mathrm{N} \\ \text { Obs } \end{array}$	Variable	Label	N	Mean	Std Dev
0	2296	diffbmige85	bmige85_f-bmige85_i	2296	-0.041	0.337
		diffbmige95	bmige95-f-bmige95_i	2296	-0.039	0.320
		diffbmizscore	bmizscore_f-bmizscoore_i	2296	-0.031	0.390
		diffwaistcm	waistcm_f-waistcm_i	2287	4.030	6.079
		diffglul00	fastglu100_f-fastglu100_i	2186	0.069	0.473
		diffins30	fastins30_f-fastins30_i	2186	0.039	0.326
		diffglu	glucose_f-glucose_i	2186	0.699	7.839
		diffins_untrans	insulin_f-insulin_i	2186	4.029	12.426
1	2307	diffbmige85	bmige85_f-bmige85_i	2307	-0.045	0.345
		diffbmige95	bmige95_f-bmige95_i	2307	-0.055	0.323
		diffbmizscore	bmizscore_f-bmizscoore_i	2307	-0.062	0.405
		diffwaistcm	waistcm_f-waistcm_i	2297	3.493	5.971
		diffglul00	fastglu100_f-fastglu100_i	2196	0.049	0.469
		diffins30	fastins30_f-fastins30_i	2187	0.038	0.311
		diffglu	glucose_f-glucose_i	2196	0.023	8.592
		diffins_untrans	insulin_f-insulin_i	2188	3.814	14.155

Randomization Assignment	$\begin{array}{r} \mathrm{N} \\ \text { Obs } \end{array}$	Variable	Label	Std Error
0	2296	diffbmige85	bmige85_f-bmige85_i	0.007
		diffbmige95	bmige95-f-bmige95-i	0.007
		diffbmizscore	bmizscore_f-bmizscore_i	0.008
		diffwaistcm	waistcm_f-waistcm_i	0.127
		diffglu100	fastglu100_f-fastglul00_i	0.010
		diffins30	fastins30_f-fastins30_i	0.007
		diffglu	glucose_f-glucose_i	0.168
		diffins_untrans	insulin_f-insulin_i	0.266
1	2307	diffbmige85	bmige85_f-bmige85_i	0.007
		diffbmige95	bmige95_f-bmige95_i	0.007
		diffbmizscore	bmizscore_f-bmizscore_i	0.008
		diffwaistcm	waistcm_f-waistcm_i	0.125
		diffglu100	fastglul00_f-fastglul00_i	0.010
		diffins30	fastins30_f-fastins30_i	0.007
		diffglu	glucose_f-glucose_i	0.183

To replicate analyses of selected continuous outcomes in Table 2
18:50 Friday, April 29, 2011

The Mixed Procedure

Model Information

Dimensions

Covariance Parameters	2
Columns in X	4
Columns in Z Per Subject	1
Subjects	42
Max Obs Per Subject	179

Number of Observations

Number of Observations Read	4603
Number of Observations Used	4603
Number of Observations Not Used	0

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	4115.30441025	
1	2	4105.88182285	0.00000000

To replicate analyses of selected continuous outcomes in Table 2

The Mixed Procedure

Convergence criteria met.

Covariance	Parameter	Estimates
Cov Parm	Subject	Estimate
Intercept	schoolid	0.001071
Residual		0.1415

Fit statistics

-2 Res Log Likelihood	4105.9
AIC (smaller is better)	4109.9
AICC (smaller is better)	4109.9
BIC (smaller is better)	4113.4

Solution for Fixed Effects

	Randomization		Standard						
Effect	Assignment	Estimate	Error	DF	t Value	$\operatorname{Pr}>\|t\|$	Alpha	Lower	Upper
assign	0	-0.03103	0.01073	40	-2.89	0.0062	0.05	-0.05272	-0.00934
assign	1	-0.05855	0.01070	40	-5.47	<.0001	0.05	-0.08017	-0.03693

To replicate analyses of selected continuous outcomes in Table 2
18:50 Friday, April 29, 2011

The Mixed Procedure

Differences of Least Squares Means

Effect	Randomization Assignment	Randomization Assignment	Estimate	Standard Error	DF	t Value	> ${ }^{\text {t }}$	a
assign	1	0	-0.02752	0.01515	40	-1.82	0.0769	0.05
Differences of Least Squares Means								
	Effect	Randomization Assignment	Randomization		Lower	Upper		
	assign	1		0	05815	0.0031		

To replicate analyses of selected continuous outcomes in Table 2
18:50 Friday, April 29, 2011

The Mixed Procedure

Model Information

Dimensions

Covariance Parameters	2
Columns in X	4
Columns in Z Per Subject	1
Subjects	42
Max Obs Per Subject	179

Number of Observations

Number of Observations Read	4603
Number of Observations Used	4584
Number of Observations Not Used	19

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	28805.72900680	
1	3	28743.57025603	0.00000029
2	1	28743.56721191	0.00000000

To replicate analyses of selected continuous outcomes in Table 2

The Mixed Procedure

Convergence criteria met.

Covariance	Parameter	Estimates
Cov Parm	Subject	Estimate
Intercept	schoolid	0.7780
Residual		30.5365

Fit Statistics

-2 Res Log Likelihood	28743.6
AIC (smaller is better)	28747.6
AICC (smaller is better)	28747.6
BIC (smaller is better)	28751.0

Solution for Fixed Effects

To replicate analyses of selected continuous outcomes in Table 2
18:50 Friday, April 29, 2011

The Mixed Procedure

Differences of Least Squares Means

To replicate analyses of selected continuous outcomes in Table 2
18:50 Friday, April 29, 2011

The Mixed Procedure

Model Information

Dimensions

Covariance Parameters	2
Columns in X	4
Columns in Z Per Subject	1
Subjects	42
Max Obs Per Subject	179

Number of Observations

Number of Observations Read	4603
Number of Observations Used	4374
Number of Observations Not Used	229

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	6536.14089549	
1	2	6513.28241995	0.00000000

To replicate analyses of selected continuous outcomes in Table 2
18:50 Friday, April 29, 2011

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Subject	Estimate
Intercept	schoolid	0.003592
Residual		0.2564

Fit Statistics

-2 Res Log Likelihood	6513.3
AIC (smaller is better)	6517.3
AICC (smaller is better)	6517.3
BIC (smaller is better)	6520.8

Solution for Fixed Effects

| Effect | Randomization Assignment | Estimate | Standard Error | DF | t Value | Pr > \|t| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intercept | | 1.4628 | 0.03172 | 40 | 46.12 | $<.0001$ |
| assign | 0 | 0.05317 | 0.02429 | 40 | 2.19 | 0.0345 |
| assign | 1 | 0 | . | - | . | . |
| logins_i | | -0.5086 | 0.01139 | 4331 | -44.65 | <. 0001 |

	Type 3 Tests of Fixed Effects			
	Num	Den		
Effect	DF	DF	F Value	Pr $>$ F
assign	1	40	4.79	0.0345
logins_i	1	4331	1993.23	$<.0001$
	Least Squares Means			

	Randomization		Standard						
Effect	Assignment	Estimate	Error	DF	t Value	$\operatorname{Pr}>\|t\|$	Alpha	Lower	Upper
assign	0	0.3270	0.01720	40	19.01	$<.0001$	0.05	0.2922	0.3618
assign	1	0.2738	0.01716	40	15.96	<.0001	0.05	0.2392	0.3085

To replicate analyses of selected continuous outcomes in Table 2
18:50 Friday, April 29, 2011

The Mixed Procedure

Differences of Least Squares Means

To replicate analyses of selected continuous outcomes in Table 2
18:50 Friday, April 29, 2011

The Mixed Procedure

Model Information

Dimensions

Covariance Parameters	2
Columns in X	4
Columns in Z Per Subject	1
Subjects	42
Max Obs Per Subject	179

Number of Observations

Number of Observations Read	4603
Number of Observations Used	4382
Number of Observations Not Used	221

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	30158.26845337	
1	2	30011.13350166	0.00000005
2	1	30011.13291181	0.00000000

To replicate analyses of selected continuous outcomes in Table 2

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Subject	Estimate
Intercept	schoolid	2.8565
Residual		54.1901

Fit Statistics

-2 Res Log Likelihood	30011.1
AIC (smaller is better)	30015.1
AICC (smaller is better)	30015.1
BIC (smaller is better)	30018.6

Solution for Fixed Effects

| Effect | Randomization Assignment | Estimate | Standard Error | DF | t Value | Pr > \|t| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intercept | | 46.2798 | 1.6429 | 40 | 28.17 | $<.0001$ |
| assign | 0 | 0.5676 | 0.5709 | 40 | 0.99 | 0.3261 |
| assign | 1 | 0 | | - | . | |
| glucose_i | | -0.4953 | 0.01708 | 4339 | -29.00 | <.0001 |

	Type 3 Tests of Fixed Effects			
	Num	Den		
Effect	DF	DF	F Value	Pr $>$ F
assign	1	40	0.99	0.3261
glucose_i	1	4339	841.11	$<.0001$
	Least Squares Means			

	Randomization Assignment	Estimate	Standard Error	DF	t Value	Pr $>\|t\|$	Alpha	Lower	Upper
assign	0	0.5263	0.4040	40	1.30	0.2002	0.05	-0.2903	1.3428
assign	1	-0.04134	0.4033	40	-0.10	0.9189	0.05	-0.8565	0.7738

To replicate analyses of selected continuous outcomes in Table 2
18:50 Friday, April 29, 2011

The Mixed Procedure

Differences of Least Squares Means

To replicate analyses of selected dichotomous outcomes in Table 2

The GLIMMIX Procedure

Model Information

Data Set	WORK.LONGF
Response Variable	bmige85
Response Distribution	Binary
Link Function	Logit
Variance Function	Default
Variance Matrix Blocked By	Schoolid
Estimation Technique	Residual PL
Degrees of Freedom Method	Between-Within

Class Level Information

Class	Levels	Values											
studentid	4603	not printed											
schoolid	42	$\begin{array}{lllll}11 & 13 & 15 & 16\end{array}$	18	21	23	24	25	26	27	33	36	38	39
		40414548	51	53	55	56	57	60	63	66	70	71	
		$\begin{array}{llll}73 & 74 & 76 & 77\end{array}$	79	86	87	88	90	94	96	98			
time	2	01											

Number of Observations Read	9206
Number of Observations Used	9206

Response Profile		
Ordered		Total
Value	bmige85	Frequency
1	0	4820
2	1	4386

The GLIMMIX procedure is modeling the probability that bmige85='1'.

G-side Cov. Parameters	1
Columns in X	5
Columns in Z per Subject	1
Subjects (Blocks in V)	42
Max Obs per Subject	358

To replicate analyses of selected dichotomous outcomes in Table 2

The GLIMMIX Procedure

Optimization Information

Optimization Technique	Newton-Raphson with Ridging
Parameters in Optimization	1
Lower Boundaries	1
Upper Boundaries	0
Fixed Effects	Profiled
Starting From	Data

Iteration History

Standard

Cov Parm	Subject	Estimate	Error
Intercept	schoolid	0	.

To replicate analyses of selected dichotomous outcomes in Table 2
18:50 Friday, April 29, 2011
The GLIMMIX Procedure

Solutions for Fixed Effects

Effect	time	Estimate	Standard Error	DF	t Value	$\operatorname{Pr}>\|t\|$	Alpha	Lower	Upper
Intercept		-3.7258	0.1103	40	-33.79	$<.0001$	0.05	-3.9486	-3.5029
assign		-0.00873	0.08921	40	-0.10	0.9225	0.05	-0.1890	0.1716
bmige85_i		5.8208	0.1004	9162	57.96	<. 0001	0.05	5.6240	6.0177
time	0	0.8154	0.09491	41	8.59	<. 0001	0.05	0.6237	1.0071
time	1	0		.	-	.	.	-	

Type I Tests of Fixed Effects

To replicate analyses of selected dichotomous outcomes in Table 2

The GLIMMIX Procedure

Model Information

Data Set	WORK.LONGF
Response Variable	bmige95
Response Distribution	Binary
Link Function	Logit
Variance Function	Default
Variance Matrix Blocked By	Schoolid
Estimation Technique	Residual PL
Degrees of Freedom Method	Between-Within

Class Level Information

Class	Levels	Values											
studentid	4603	not printed											
schoolid	42	$\begin{array}{lllll}11 & 13 & 15 & 16\end{array}$	18	21	23	24	25	26	27	33	36	38	39
		40414548	51	53	55	56	57	60	63	66	70	71	
		$\begin{array}{llll}73 & 74 & 76 & 77\end{array}$	79	86	87	88	90	94	96	98			
time	2	01											

Number of Observations Read	9206
Number of Observations Used	9206

Response Profile

Ordered

 Value bmige 95 0| 1 | 0 |
| :--- | :--- |
| 2 | 1 |

Total
Frequency

6636
2570

The GLIMMIX procedure is modeling the probability that bmige95='1'.

G-side Cov. Parameters	1
Columns in X	5
Columns in Z per Subject	1
Subjects (Blocks in V)	42
Max Obs per Subject	358

To replicate analyses of selected dichotomous outcomes in Table 2

The GLIMMIX Procedure

Optimization Information

Optimization Technique	Newton-Raphson with Ridging
Parameters in Optimization	1
Lower Boundaries	1
Upper Boundaries	0
Fixed Effects	Profiled
Starting From	Data

Iteration History

Standard

Cov Parm	Subject	Estimate	Error
Intercept	schoolid	0	.

To replicate analyses of selected dichotomous outcomes in Table 2
18:50 Friday, April 29, 2011

The GLIMMIX Procedure

Solutions for Fixed Effects

Effect	time	Estimate	Standard Error	DF	t Value	$\operatorname{Pr}>\|t\|$	Alpha	Lower	Upper
Intercept		-4.4052	0.1246	40	-35.35	$<.0001$	0.05	-4.6571	-4.1533
assign		-0.1861	0.09672	40	-1.92	0.0615	0.05	-0.3815	0.009416
bmige95_i		6.0135	0.1141	9162	52.71	<. 0001	0.05	5.7898	6.2371
time	0	1.0526	0.1057	41	9.96	<. 0001	0.05	0.8391	1.2662
time	1	0			

Type I Tests of Fixed Effects

To replicate analyses of selected dichotomous outcomes in Table 2

The GLIMMIX Procedure

Model Information

Data Set	WORK.LONGF
Response Variable	fastgluloo
Response Distribution	Binary
Link Function	Logit
Variance Function	Default
Variance Matrix Blocked By	Schoolid
Estimation Technique	Residual PL
Degrees of Freedom Method	Between-Within

Class Level Information

The GLIMMIX procedure is modeling the probability that fastglul00='1'.

G-side Cov. Parameters	1
Columns in X	5
Columns in Z per Subject	1
Subjects (Blocks in V)	42
Max Obs per Subject	356

To replicate analyses of selected dichotomous outcomes in Table 2

The GLIMMIX Procedure

Optimization Information

Optimization Technique	Newton-Raphson with Ridging
Parameters in Optimization	1
Lower Boundaries	1
Upper Boundaries	0
Fixed Effects	Profiled
Starting From	Data

Iteration History

Solutions for Fixed Effects

Effect	time	Estimate	Error	DF	t Value	Pr $>\|t\|$	Alpha	Lower	
Intercept		-2.1500	0.1076	40	-19.97	$<.0001$	0.05	-2.3675	-1.9324
assign		-0.08728	0.1435	40	-0.61	0.5464	0.05	-0.3772	0.2027
fastglul00_i		3.5669	0.07888	8806	45.22	$<.0001$	0.05	3.4123	3.7216
time	0	-0.6367	0.07163	41	-8.89	$<.0001$	0.05	-0.7813	-0.4920

To replicate analyses of selected dichotomous outcomes in Table 2
18:50 Friday, April 29, 2011

The GLIMMIX Procedure

Solutions for Fixed Effects

Effect	time	Estimate	Error	DF	t	Value	Alpha	Lower	Upper
time	1	0							

ype I Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr $>$ F
assign	1	40	0.51	0.4780
fastglul00_i	1	8806	2044.89	$<.0001$
time	1	41	79.00	$<.0001$

Type III Tests of Fixed Effects				
	Num	Den		
Effect	DF	DF	F Value	Pr $>$ F
assign	1	40	0.37	0.5464
fastglul00_i	1	8806	2044.90	$<.0001$
time	1	41	79.00	$<.0001$

```
To replicate analyses of selected dichotomous outcomes in Table 2
                                    18:50 Friday, April 29, 2011
The GITMMIX Procedure
Model Information
\begin{tabular}{ll} 
Data Set & WORK.LONGF \\
Response Variable & fastins30 \\
Response Distribution & Binary \\
Link Function & Logit \\
Variance Function & Default \\
Variance Matrix Blocked By & schoolid \\
Estimation Technique & Residual PL \\
Degrees of Freedom Method & Between-Within
\end{tabular}
Class Level Information
```



```
\begin{tabular}{ll} 
Number of Observations Read & 9206 \\
Number of Observations Used & 8834
\end{tabular}
```


Response Profile

Ordered Value fastins30 Frequency

10
8063
771

```
The GLIMMIX procedure is modeling the probability that fastins30='1'.
```

G-side Cov. Parameters	1
Columns in X	5
Columns in Z per Subject	1
Subjects (Blocks in V)	42
Max Obs per Subject	356

To replicate analyses of selected dichotomous outcomes in Table 2

The GLIMMIX Procedure

Optimization Information

Optimization Technique	Newton-Raphson with Ridging
Parameters in Optimization	1
Lower Boundaries	1
Upper Boundaries	0
Fixed Effects	Profiled
Starting From	Data

Iteration History

| Effect | time | Estimate | Standard Error | DF | t Value | Pr > \|t| | Alpha | Lower | Upper |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intercept | | -2.8465 | 0.08919 | 40 | -31.92 | $<.0001$ | 0.05 | -3.0267 | -2.6662 |
| assign | | -0.07829 | 0.1106 | 40 | -0.71 | 0.4830 | 0.05 | -0.3018 | 0.1452 |
| fastins30_i | | 4.5599 | 0.1189 | 8790 | 38.35 | $<.0001$ | 0.05 | 4.3269 | 4.7930 |

To replicate analyses of selected dichotomous outcomes in Table 2
18:50 Friday, April 29, 2011

The GLIMMIX Procedure

Solutions for Fixed Effects

Effect	time	Estimate	Error Er	DF	t Value	Pr $>\|t\|$	Alpha	Lower	Upper
time	0	-0.8774	0.1066	41	-8.23	$<.0001$	0.05	-1.0926	-0.6621
time	1	0	

Type I Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr $>$ F
assign	1	40	1.19	0.2812
fastins30_i	1	8790	1471.28	$<.0001$
time	1	41	67.76	$<.0001$

Type III Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr $>$ F
assign				0.50
fastins30_i	1	40	0.4830	
time	1	8790	1470.98	$<.0001$
	1	41	67.76	$<.0001$

[^0]: HEALTHY Study Group, Foster GD, Linder B, Baranowski T, Cooper DM, Goldberg L, Harrell JS, Kaufman F, Marcus MD, Treviño RP, Hirst K. A school-based intervention for diabetes risk reduction. New England Journal of Medicine 363(5) [2010 Jul 29]: 443-53.

 Epub 2010 Jun 27.

[^1]: ************************************;
 Title To replicate analyses of selected dichotomous outcomes in Table 2 ;

