Dataset Integrity Check for Bone Density in Children With Chronic Liver Disease Correlates With Growth and Cholestasis – Techman et al
Contents

1 Standard Disclaimer ... 2

2 Study Background .. 2

3 Archived Datasets .. 2

4 Statistical Methods .. 3

5 Results ... 3

6 Conclusions ... 3

7 References ... 3

Table A: Variables used to replicate Table 1: Demographic Characteristics of A1AT Liver Disease Cohort, with Native Liver and Post-Transplant ... 4

Table B: Comparison of values computed in integrity check to reference article Table 1 values 5

Attachment A: SAS Code .. 9
1 Standard Disclaimer

The intent of this DSIC is to provide confidence that the data distributed by the NIDDK repository is a true copy of the study data. Our intent is not to assess the integrity of the statistical analyses reported by study investigators. As with all statistical analyses of complex datasets, complete replication of a set of statistical results should not be expected in secondary analysis. This occurs for a number of reasons including differences in the handling of missing data, restrictions on cases included in samples for a particular analysis, software coding used to define complex variables, etc. Experience suggests that most discrepancies can ordinarily be resolved by consultation with the study data coordinating center (DCC), however this process is labor-intensive for both DCC and Repository staff. It is thus not our policy to resolve every discrepancy that is observed in an integrity check. Specifically, we do not attempt to resolve minor or inconsequential discrepancies with published results or discrepancies that involve complex analyses, unless NIDDK Repository staff suspect that the observed discrepancy suggests that the dataset may have been corrupted in storage, transmission, or processing by repository staff. We do, however, document in footnotes to the integrity check those instances in which our secondary analyses produced results that were not fully consistent with those reported in the target publication.

2 Study Background

The Childhood Liver Disease Research Network (ChiLDReN) is a National Institutes of Health–funded consortium of pediatric centers in North America focused on the study of rare pediatric liver diseases. The Longitudinal Study of Genetic Causes of Intrahepatic Cholestasis (LOGIC; NCT00571272) enrolled children with one of four diagnoses: ALGS, PFIC, A1AT, or bile acid synthetic disorder (BASD). As part of the LOGIC study protocol, participants aged >5 years underwent DXA scanning, the results of which are reported here. The objectives of this study were to address an important knowledge gap by investigating the prevalence of bone mineral deficits in this cohort of children with chronic liver disease and to determine factors associated with lower bone density, including growth parameters, laboratory values, and clinical events such as fracture and biliary diversion.

3 Archived Datasets

All the SAS data files, as provided by the Data Coordinating Center (DCC), are located in the LOGIC folder in the data package. For this replication, variables were taken from the “a1atbaseline.sas7bdat” dataset.
4 Statistical Methods

Analyses were performed to duplicate results for the data published by Techman et al [1] in the journal *J Pediatr Gastroenterol Nutr* in 2015. To verify the integrity of the dataset, descriptive statistics were computed.

5 Results

For Table 1 in the publication [1], *Demographic Characteristics of A1AT Liver Disease Cohort, with Native Liver and Post-Transplant*, Table A lists the variables that were used in the replication and Table B compares the results calculated from the archived data files to the results published in Table 1.

6 Conclusions

The NIDDK repository is confident that the a1atbaseline data file to be distributed is a true copy of the study data.

7 References

Table A: Variables used to replicate Table 1: Demographic Characteristics of A1AT Liver Disease Cohort, with Native Liver and Post-Transplant

<table>
<thead>
<tr>
<th>Table Variable</th>
<th>dataset.variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>a1atbaseline.age</td>
</tr>
<tr>
<td>Age at symptoms first noticed, years</td>
<td>a1atbaseline.ihx2b01_age</td>
</tr>
<tr>
<td>Age at liver disease diagnosed, years</td>
<td>a1atbaseline.ihx2b02_age</td>
</tr>
<tr>
<td>Gender, N (%)</td>
<td>a1atbaseline.dmgab02</td>
</tr>
<tr>
<td>Ethnicity, N (%)</td>
<td>a1atbaseline.dmgab03</td>
</tr>
<tr>
<td>Race, N (%)</td>
<td>a1atbaseline.racecat</td>
</tr>
<tr>
<td>Genotype/phenotype, N (%)</td>
<td>a1atbaseline.sz</td>
</tr>
<tr>
<td>Genotype/phenotype, N (%)</td>
<td>a1atbaseline.zz</td>
</tr>
<tr>
<td>Cohort</td>
<td>a1atbaseline.pretx</td>
</tr>
</tbody>
</table>
Table B: Comparison of values computed in integrity check to reference article Table 1 values

<table>
<thead>
<tr>
<th>Character</th>
<th>All Manuscript</th>
<th>All DSIC</th>
<th>All Difference</th>
<th>Native Liver Manuscript</th>
<th>Native Liver DSIC</th>
<th>Native Liver Difference</th>
<th>Post-Transplant Manuscript</th>
<th>Post-Transplant DSIC</th>
<th>Post-Transplant Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>8.2</td>
<td>8.2</td>
<td>0</td>
<td>6.9</td>
<td>6.9</td>
<td>0</td>
<td>12.9</td>
<td>12.9</td>
<td>0</td>
</tr>
<tr>
<td>Age at symptoms first noticed</td>
<td>1.3</td>
<td>1.3</td>
<td>0</td>
<td>1.4</td>
<td>1.4</td>
<td>0</td>
<td>0.9</td>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>Age at liver disease dx</td>
<td>1.7</td>
<td>1.7</td>
<td>0</td>
<td>1.8</td>
<td>1.8</td>
<td>0</td>
<td>1.3</td>
<td>1.3</td>
<td>0</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>6.38</td>
<td>6.38</td>
<td>0</td>
<td>5.65</td>
<td>5.65</td>
<td>0</td>
<td>6.51</td>
<td>6.51</td>
<td>0</td>
</tr>
<tr>
<td>Age at symptoms first noticed</td>
<td>3.14</td>
<td>3.14</td>
<td>0</td>
<td>3.33</td>
<td>3.33</td>
<td>0</td>
<td>2.34</td>
<td>2.34</td>
<td>0</td>
</tr>
<tr>
<td>Age at liver disease dx</td>
<td>3.29</td>
<td>3.29</td>
<td>0</td>
<td>3.43</td>
<td>3.43</td>
<td>0</td>
<td>2.71</td>
<td>2.71</td>
<td>0</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>6.8</td>
<td>6.8</td>
<td>0</td>
<td>5.5</td>
<td>5.5</td>
<td>0</td>
<td>13.7</td>
<td>13.7</td>
<td>0</td>
</tr>
<tr>
<td>Age at symptoms first noticed</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>Age at liver disease dx</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>Character</td>
<td>All Manuscript</td>
<td>All DSIC</td>
<td>All Difference</td>
<td>Native Liver Manuscript</td>
<td>Native Liver DSIC</td>
<td>Native Liver Difference</td>
<td>Post-Transplant Manuscript</td>
<td>Post-Transplant DSIC</td>
<td>Post-Transplant Difference</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>----------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>2.8</td>
<td>2.8</td>
<td>0</td>
<td>2.0</td>
<td>2</td>
<td>0</td>
<td>7.0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Age at symptoms first noticed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>Age at liver disease dx</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>12.9</td>
<td>12.9</td>
<td>0</td>
<td>9.8</td>
<td>9.75</td>
<td>0.05</td>
<td>18.4</td>
<td>18.4</td>
<td>0</td>
</tr>
<tr>
<td>Age at symptoms first noticed</td>
<td>0.9</td>
<td>0.9</td>
<td>0</td>
<td>1.0</td>
<td>1</td>
<td>0</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>Age at liver disease dx</td>
<td>1.6</td>
<td>1.6</td>
<td>0</td>
<td>1.6</td>
<td>1.6</td>
<td>0</td>
<td>0.9</td>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>Min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>Age at symptoms first noticed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Age at liver disease dx</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>24.9</td>
<td>24.9</td>
<td>0</td>
<td>24.9</td>
<td>24.9</td>
<td>0</td>
<td>24.6</td>
<td>24.6</td>
<td>0</td>
</tr>
<tr>
<td>Character</td>
<td>All Manuscript</td>
<td>All DSIC</td>
<td>All Difference</td>
<td>Native Liver Manuscript</td>
<td>Native Liver DSIC</td>
<td>Nativ e Liver Difference</td>
<td>Post-Transplant Manuscript</td>
<td>Post-Transplant DSIC</td>
<td>Post-Transplant Difference</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Age at symptoms first noticed</td>
<td>20.2</td>
<td>20.2</td>
<td>0</td>
<td>20.2</td>
<td>20.2</td>
<td>0</td>
<td>12.6</td>
<td>12.6</td>
<td>0</td>
</tr>
<tr>
<td>Age at liver disease dx</td>
<td>20.2</td>
<td>20.2</td>
<td>0</td>
<td>20.2</td>
<td>20.2</td>
<td>0</td>
<td>12.9</td>
<td>12.9</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>269</td>
<td>269</td>
<td>0</td>
<td>208</td>
<td>208</td>
<td>0</td>
<td>61</td>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>Age at symptoms first noticed</td>
<td>245</td>
<td>245</td>
<td>0</td>
<td>190</td>
<td>190</td>
<td>0</td>
<td>55</td>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>Age at liver disease dx</td>
<td>255</td>
<td>255</td>
<td>0</td>
<td>199</td>
<td>199</td>
<td>0</td>
<td>56</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>Gender, N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male, N</td>
<td>164</td>
<td>164</td>
<td>0</td>
<td>124</td>
<td>124</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Female, N</td>
<td>105</td>
<td>105</td>
<td>0</td>
<td>84</td>
<td>84</td>
<td>0</td>
<td>21</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>Ethnicity, N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>18</td>
<td>18</td>
<td>0</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Non-Hispanic</td>
<td>247</td>
<td>247</td>
<td>0</td>
<td>189</td>
<td>189</td>
<td>0</td>
<td>58</td>
<td>58</td>
<td>0</td>
</tr>
<tr>
<td>Race, N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native American</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Black</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Caucasian</td>
<td>250</td>
<td>250</td>
<td>0</td>
<td>194</td>
<td>194</td>
<td>0</td>
<td>56</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>Multiracial</td>
<td>14</td>
<td>14</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Character</td>
<td>All Manuscript</td>
<td>All DSIC</td>
<td>All Difference</td>
<td>Native Liver Manuscript</td>
<td>Native Liver DSIC</td>
<td>Native Liver Difference</td>
<td>Post-Transplant Manuscript</td>
<td>Post-Transplant DSIC</td>
<td>Post-Transplant Difference</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Not Reported</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Genotype/phenotype, N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SZ</td>
<td>21</td>
<td>21</td>
<td>0</td>
<td>17</td>
<td>17</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>ZZ</td>
<td>246</td>
<td>246</td>
<td>0</td>
<td>190</td>
<td>190</td>
<td>0</td>
<td>56</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Gender, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male, %</td>
<td>61.0</td>
<td>61</td>
<td>0</td>
<td>59.6</td>
<td>59.6</td>
<td>0</td>
<td>65.6</td>
<td>65.6</td>
<td>0</td>
</tr>
<tr>
<td>Female, %</td>
<td>39.0</td>
<td>39</td>
<td>0</td>
<td>40.4</td>
<td>40.4</td>
<td>0</td>
<td>34.4</td>
<td>34.4</td>
<td>0</td>
</tr>
<tr>
<td>Ethnicity, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>6.8</td>
<td>6.7</td>
<td>0.1</td>
<td>7.4</td>
<td>7.2</td>
<td>0.2</td>
<td>4.9</td>
<td>4.9</td>
<td>0</td>
</tr>
<tr>
<td>Non-Hispanic</td>
<td>93.2</td>
<td>91.8</td>
<td>1.4</td>
<td>92.6</td>
<td>90.9</td>
<td>1.7</td>
<td>95.1</td>
<td>95.1</td>
<td>0</td>
</tr>
<tr>
<td>Race, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native American</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Black</td>
<td>1.1</td>
<td>1.1</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>3.3</td>
<td>3.3</td>
<td>0</td>
</tr>
<tr>
<td>Caucasian</td>
<td>92.9</td>
<td>92.9</td>
<td>0</td>
<td>93.3</td>
<td>93.3</td>
<td>0</td>
<td>91.8</td>
<td>91.8</td>
<td>0</td>
</tr>
<tr>
<td>Multiracial</td>
<td>5.2</td>
<td>5.2</td>
<td>0</td>
<td>5.3</td>
<td>5.3</td>
<td>0</td>
<td>4.9</td>
<td>4.9</td>
<td>0</td>
</tr>
<tr>
<td>Not Reported</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Genotype/phenotype, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SZ</td>
<td>7.8</td>
<td>7.8</td>
<td>0</td>
<td>8.2</td>
<td>8.2</td>
<td>0</td>
<td>6.6</td>
<td>6.6</td>
<td>0</td>
</tr>
<tr>
<td>ZZ</td>
<td>91.5</td>
<td>91.4</td>
<td>0.1</td>
<td>91.4</td>
<td>91.3</td>
<td>0.1</td>
<td>91.8</td>
<td>91.8</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>0.7</td>
<td>0.7</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>1.6</td>
<td>1.6</td>
<td>0</td>
</tr>
</tbody>
</table>
options nocenter validvarname=upcase;

title '/prj/niddk/ims_analysis/LOGIC/prog_initial_analysis/dsic.LOGIC_Techman.y2019m04d15.sas';
run;

**********;
* INPUT ;
**********;
libname orig '/prj/niddk/ims_analysis/LOGIC/private_orig_data/Teckman_LOGIC_PROBE_A1AT/';

***************;
* MACROS ;
***************;
%macro readin(ds);
 data &ds;
 set sasfile.&ds;
 run;

 proc contents data=&ds;
 title3 &ds;
 run;
%mend;

* produce n and %;
%macro npercent(rownum, var, varf, subset, subsetname);
 proc freq data=analy noprint;
 where &subset = 1;
 tables &var/list missing out=tbl1&subsetname;
 run;

 data tbl1&subsetname;
 length covar covarf $100;
 set tbl1&subsetname;
 covar = "&var";
 covarf = put(&var,&varf.);
 rownum = &rownum;
 run;

 data prnt&subsetname;
 set prnt&subsetname tbl1&subsetname;
 run;
%mend;
%macro univ(rownum, var, subset, subsetname);

proc univariate data=analy outtable= univ&subsetname noprint;
 where &subset=1;
 var &var
 ;
run;

data univ&subsetname;
 length covarf $100 _var_ $25;
 set univ&subsetname;
 covarf = "&subset";
 rownum = &rownum;
run;

data prntuniv&subsetname;
 set prntuniv&subsetname univ&subsetname;
run;
%mend;

*************;
* FORMATS ;
*************;
proc format;
 value novalue
 . = "No Value"
 other = " Value"
 ;

 value genderf
 1=' Male'
 2='Female'
 ;

 value ethnicf
 1 = 'Hispanic'
 2 = 'Non-hispanic'
 66 = 'Not reported'
 ;

 value racef
 1 = ' Native American'
 2 = 'Asian'
 3 = 'Black or African-American'
 4 = 'Native Hawaiian or PI'
 5 = 'Caucasian'
 6 = 'Unknown'
 ;
data baseline;
set orig.alatbaseline;
run;

proc contents data=baseline;
run;

proc freq data=baseline;
table pretx/missing;
run;

data analy;
set baseline;
* create subset flag for each row to use in macro call;
 all = 1;
 if pretx = 1 then in_native=1;
 else if pretx = 0 then in_post = 1;
 if sz=1 and zz=0 then geno_sz_zz = 1;
 else if sz=0 and zz=1 then geno_sz_zz = 2;
 else if sz=0 and zz=0 then geno_sz_zz = 99;
 if racecat='A' then racecatn = 1;
 else if racecat='B' then racecatn = 2;
 else if racecat='C' then racecatn = 3;
 else if racecat='D' then racecatn = 4;
 else if racecat='E' then racecatn = 5;
 else if racecat='F' then racecatn = 6;
 else if racecat='G' then racecatn = 7;
 else if racecat='H' then racecatn = 8;
 if dmgab02 = '1' then dmgab02n = 1;
 else if dmgab02 = '2' then dmgab02n = 2;
 if dmgab03 = '1' then dmgab03n = 1;
 else if dmgab03 = '2' then dmgab03n = 2;
 else if dmgab03 = '66' then dmgab03n = 66;
run;

proc freq data=analy;
 tables pretx*in_native*in_post/list missing;
 tables geno_sz_zz*sz_zz/list missing;
 tables racecat*racecatn/list missing;
 tables dmgab02*dmgab02n
dmgab03*dmgab03n/list missing;
run;

* med, min and max;
data prntunivall;
 set _null_; run;
%univ(1, age , all , all);
%univ(2, ihx2b01_age , all , all);
%univ(3, ihx2b02_age , all , all);
proc print data= prntunivall noobs;
 var rownum _var_ covarf _nobs_ _mean_ _std_ _median_ _q1_ _q3_ _min_ _max_ ; run;

data prntunivnative;
 set _null_; run;
%univ(1, age , in_native , native);
%univ(2, ihx2b01_age , in_native , native);
%univ(3, ihx2b02_age , in_native , native);
proc print data= prntunivnative noobs;
 var rownum _var_ covarf _nobs_ _mean_ _std_ _median_ _q1_ _q3_ _min_ _max_ ; run;

data prntunivposttransplant;
 set _null_; run;
%univ(1, age , in_post , posttransplant);
%univ(2, ihx2b01_age , in_post , posttransplant);
%univ(3, ihx2b02_age , in_post , posttransplant);
proc print data= prntunivposttransplant noobs;
 var rownum _var_ covarf _nobs_ _mean_ _std_ _median_ _q1_ _q3_ _min_ _max_ ; run;

* combine rows;
proc sort data=prntunivnative (rename=(_nobs_ = nav_nobs_
 median = nav_median_
 q1 = nav_q1_
 q3 = nav_q3_
 min = nav_min_
 max = nav_max_
 mean = nav_mean_
 std = nav_std_)
by rownum covarf;
run;

proc sort data=prntunivposttransplant (rename=(_nobs_ = post_nobs_
 median = post_median_
 q1 = post_q1_
 q3 = post_q3_
 min = post_min_
 max = post_max_
 mean = post_mean_
 std = post_std_)
by rownum covarf;
run;

data alluniv;
merge prntunivall (in=in1 keep = rownum _var_ covarf _nobs_ _mean_ _std_ _median_ _q1_ _q3_ _min_ _max_)
prntunivnative (in=in2 keep = rownum _var_ covarf nav_nobs nav_median nav_q1 nav_q3 nav_min nav_max nav_mean nav_std)
prntunivposttransplant (in=in3 keep = rownum _var_ covarf post_nobs post_median post_q1 post_q3 post_min post_max post_mean post_std);
by rownum;
if in1 or in2 or in3;
run;

/* n and percent;
data prntall;
set _null_; run;

%npercent(4, dmgab02n , genderf , all , all);
%npercent(5, dmgab03n , ethnicf , all , all);
%npercent(6, racecatn , racef , all , all);
%npercent(7, geno_sz_zz , genof , all , all);

proc print data=prntall;
var rownum covarf COUNT PERCENT;
title3 "All Cohort";
run;
data prntnative;
set _null_
run;

%npercent(4, dmgab02n, genderf, in_native, native);
%npercent(5, dmgab03n, ethnicf, in_native, native);
%npercent(6, racecatn, racef, in_native, native);
%npercent(7, geno_sz_zz, genof, in_native, native);

proc print data=prntnative;
var rownum covarf count percent;
title3 "Native Liver Cohort";
run;

data prntposttransplant;
set _null_
run;

%npercent(4, dmgab02n, genderf, in_post, posttransplant);
%npercent(5, dmgab03n, ethnicf, in_post, posttransplant);
%npercent(6, racecatn, racef, in_post, posttransplant);
%npercent(7, geno_sz_zz, genof, in_post, posttransplant);

proc print data=prntposttransplant;
var rownum covarf count percent;
title3 "Post-Transplant";
run;

* combine rows;
proc sort data=prntall;
by rownum covarf;
run;

proc sort data=prntnative (rename=(count=natv_count percent=natv_percent));
by rownum covarf;
run;

proc sort data=prntposttransplant (rename=(count=post_count percent=post_percent));
by rownum covarf;
run;

data allnprcnt;
merge prntall (in=in1 keep=rownum covarf count percent) prntnative (in=in2 keep=rownum covarf natv_count natv_percent) prntposttransplant (in=in3 keep=rownum covarf post_count post_percent);
by rownum covarf;
if in1 or in2 or in3;
run;

data table1;
 set alluni allnprcnt;
 mean = round(_mean_, .1);
 nav_mean_ = round(nav_mean_, .1);
 post_mean_ = round(post_mean_, .1);
 std = round(_std_, .01);
 nav_std_ = round(nav_std_, .01);
 post_std_ = round(post_std_, .01);
 percent = round(percent, .1);
 natv_percent = round(natv_percent, .1);
 post_percent = round(post_percent, .1);

 label _nobs_ = 'All N';
 nav_nobs_ = 'Native Liver N';
 post_nobs_ = 'Post-Transplant N';
 mean = 'All Mean';
 nav_mean_ = 'Native Liver Mean';
 post_mean_ = 'Post-Transplant Mean';
 std = 'All SD';
 nav_std_ = 'Native Liver SD';
 post_std_ = 'Post-Transplant SD';
 median = 'All Median';
 nav_median_ = 'Native Liver Median';
 post_median_ = 'Post-Transplant Median';
 q1 = 'All Q1';
 nav_q1_ = 'Native Liver Q1';
 post_q1_ = 'Post-Transplant Q1';
 q3 = 'All Q3';
 nav_q3_ = 'Native Liver Q3';
 post_q3_ = 'Post-Transplant Q3';
 min = 'All Min';
 nav_min_ = 'Native Liver Min';
 post_min_ = 'Post-Transplant Min';
 max = 'All Max';
 nav_max_ = 'Native Liver Max';
 post_max_ = 'Post-Transplant Max';
 count = 'All N';
 natv_count = 'Native Liver N';
 post_count = 'Post-Transplant N';
 percent = 'All Percent';
 natv_percent = 'Native Liver Percent';
 post_percent = 'Post-Transplant Percent';

run;

proc print data=table1 label;
 var rownum _var_ covarf _nobs_;

15
```
nav_nobs_
post_nobs_
  _mean_
nav_mean_
post_mean_
  _std_
nav_std_
post_std_
  _median_
nav_median_
post_median_
  _q1_
nav_q1_
post_q1_
  _q3_
nav_q3_
post_q3_
  _min_
nav_min_
post_min_
  _max_
nav_max_
post_max_

count
natv_count
post_count
percent
natv_percent
post_percent;
run;

endsas;
alatbaseline.age
alatbaseline.ihx2b01_age
alatbaseline.ihx2b02_age
alatbaseline.dmgab02
alatbaseline.dmgab03
alatbaseline.racecat
alatbaseline.geno_sz_zz
```