S. Tan

January 8, 2008

Dataset Integrity Check for the
 Study of Viral Resistance to Antiviral Therapy for Chronic Hepatitis C (Virahep-C) Baseline Files

Note. This current version, dated 01/08/08, replaces the previously released DSIC dated 12/17/07.
The Virahep-C multicenter treatment trial was designed to assess the rates of response to peginterferon combination therapy for hepatitis C among African-American (AA) and Caucasian-American (CA) treatment-naïve patients. The goal of the study was to elucidate the mechanisms of antiviral resistance among patients who fail to respond to peginterferon combination therapy. As a partial check of the integrity of the Virahep-C main study datasets archived in the NIDDK data repository, a dataset integrity check (DSIC) was performed to verify that selected published results from the main study can be reproduced using the archived datasets. The DSIC consists of a small number of analyses performed to duplicate published results reported by the Virahep-C Study Group [1] in Gastroenterology in August, 2006. Results of the DSIC are described below.

The intent of this DSIC is to provide confidence that the data distributed by the NIDDK repository is a true copy of the study data. Our intent is not to assess the integrity of the statistical analyses reported by study investigators. As with all statistical analyses of complex datasets, complete replication of a set of statistical results should not be expected on a first (or second) exercise in secondary analysis. This occurs for a number of reasons including differences in the handling of missing data, restrictions on cases included in samples for a particular analysis, software coding used to define complex variables, etc. Experience suggests that most discrepancies can ordinarily be resolved by consultation with the study data coordinating center (DCC), however this process is labor-intensive for both DCC and Repository staff. It is thus not our policy to resolve every discrepancy that is observed in an integrity check. Specifically, we do not attempt to resolve minor or inconsequential discrepancies with published results or discrepancies that involve complex analyses, unless staff of the NIDDK Repository suspect that the observed discrepancy suggests that the dataset may have been corrupted in storage, transmission, or processing by repository staff. We do, however, document in footnotes to the integrity check those instances in which our secondary analyses produced results that were not fully consistent with those reported in the target publication.

Dataset Integrity Check. The DCC submitted 34 data files representing the raw data collected for the Virahep-C main protocol, together with corresponding data collection forms, brief dataset descriptions, variable labels, and SAS formats (value labels). Contents of the archived raw datasets exactly matched the dataset descriptions provided by the DCC. Missing data values were qualified, using SAS formats, as "Unknown", "N/A", "Refused", or "Missing". Analysis datasets used for results published by the Virahep-C Study Group were not provided at the time of this DSIC. A representative of the DCC was available for general questions regarding study and data protocols; however, reconstruction of the analysis dataset was left primarily to Repository analysts. For purposes of the DSIC, an analysis dataset was recreated by Repository staff from portions of the 34 raw data files. Results of analyses on the reconstructed analysis dataset were compared to published results. A percentage of published results were replicated, selected to assure the quality of the archived datasets.

Analysis Methods. As indicated in the publication, baseline demographic and clinical characteristics among racial groups (AA and CA) were compared using the ? test of association with continuity correction or exact tests. The nonparametric Wilcox on rank-sum test was used to test for racial
differences in the distributions of continuous variables. The primary end point, sustained virologic response (SVR), was defined as the absence of detectable HCV RNA in serum 24 weeks after therapy was stopped ${ }^{1}$. Accordingly, an outcome indicator denoting presence or absence of SVR was constructed. The DCC provided the following protocol for the calculation of SVR:

Definition of Sustained Viral Response (SVR) ${ }^{2}$

Qualitative tests were completed in duplicate. SVR was defined by qualitative test results at 24 weeks post treatment with a minimum time of 20 weeks post treatment. If both qualitative tests were positive, then participant was considered to be a non-responder (NR) for SVR.

If qualitative results were not available at 24 weeks post treatment:
1.) If no further tests were available, the participant was considered to be a non-responder (NR)
2.) If subsequent qualitative tests were available then these results were used to determine SVR status.

Associations between measures of interest and SVR were reported as relative risks with 95% confidence intervals. Estimates of relative risk were assessed using generalized estimating equations ${ }^{3}$. Statistical analyses were performed using PC-SAS v.9.1 (Cary, NC) ${ }^{4}$.

Analysis Cohort. The study publication reports that of the 401 patients who met the entry criteria and subsequently enrolled, 196 were AA and 205 were CA. Upon examination of the raw datasets, Repository analysts constructed an analysis dataset as follows:
1.) Patients with baseline lab or viral load data were identified $(\mathrm{N}=403)$
2.) Patients who withdrew consent at baseline visit $(\mathrm{N}=1)$
3.) Patients who were found to be ineligible during the course of the study were removed $(\mathrm{N}=1)^{5}$
4.) The analysis dataset was limited to the 401 remaining patients, 196 AA and 205 CA.

Baseline Comparisons. The following results, reported in the study publication (text, p. 472 and table, p.473), were replicated by analyses of archived data for the 401 patients. AA and CA did not differ significantly in regards to sex and age. Education greater than high school level was less common among AA patients. AA patients were heavier and more likely to have a history of diabetes and hypertension. AA patients were more likely to be currently smoking than CA patients, but the difference is not significant. AA patients had lower levels of serum ALT, albumin, total bilirubin, and hemoglobin, compared to CA patients. AA patients also had borderline lower levels of serum AST and WBC compared to CA. HCV-RNA levels were similar between the two racial groups ${ }^{6}$. Actual medians and proportions for these baseline characteristics differed slightly when comparing archived data results to published results (DSIC Table 1).

[^0]DSIC Table 1. Selected ${ }^{\dagger}$ Baseline Characteristics of Virahep-C Participants.
${ }^{\dagger}$ analyses selected from publication Table 1, p. 473.

Characteristic	Source*	African Americans						Caucasian Americans						P-value	
	Dataset/ variable	Archived$(\mathrm{n}=196)$		Published$(n=196)$		Difference (0)		Archived$(n=205)$		Published$(\mathrm{n}=205)$		Difference (0)		Archived	Pub- lished
Male, n (\%)	SE / Sex	127	(64.8)	127	(64.8)	0	(0)	134	(65.4)	134	(65.4)	0	(0)	0.99	0.99
Age, y	SE / (varias)	49.2	(45.3, 53.0)	49.0	(45.0, 52.5)	-0.2	$\begin{aligned} & (-0.3,- \\ & 0.5) \end{aligned}$	48.2	(42.9, 52.4)	48.0	(43.0, 52.0)	-0.2	$\begin{aligned} & (-0.1,- \\ & 0.4) \end{aligned}$	0.07	0.08
Education	SQ/ educ	($\mathrm{n}=192$)		($\mathrm{n}=191$)		(-1)		($\mathrm{n}=204$)		($\mathrm{n}=202$)		(2)			
>High School		104	(54.2)	104	(54.5)	0	(0.3)	132	(65.0)	132	(65.4)	0	(0.4)	0.04	0.04
\leq High School		88	(45.8)	87	(45.6)	-1	(-0.2)	71	(35.0)	70	(34.7)	-1	(-0.3)		
Weight (kg)	SE / wgtb	($\mathrm{n}=193$)		($\mathrm{n}=194$)		(1)								0.001	0.001
		87.3	$\begin{aligned} & (78.2, \\ & 100.9) \end{aligned}$	87.5	(78.6, 100.9)	0.2	$(0.4,0)$	82.3	(72.7, 95.9)	82.3	(72.7, 95.5)	0.0	(0, -0.4)		
Body mass index, kg/ m²	SE / (varias)	($\mathrm{n}=191$)		($\mathrm{n}=193$)		(2)		($\mathrm{n}=203$)		($\mathrm{n}=203$)		(0)		0.0003	0.0003
		29.5	(26.3, 34.2)	29.3	(26.4, 34.0)	-0.2	$\begin{aligned} & (0.1,- \\ & 0.2) \end{aligned}$	27.6	(24.4, 31.5)	27.6	(24.4, 31.5)	0.0	$(0,0)$		
History of diabetes, n (\%)	SE / mxdiab	30	(15.3)	30	(15.3)	0	(0)	9	(4.4)	9	(4.4)	0	(0)	0.0004	0.0004
History of hypertension	SE / mxbp	85	(43.4)	84	(42.9)	-1	(-0.5)	43	(21.0)	43	(21.0)	0	(0)	<0.0001	<0.0001
Currently smoking, n (\%)	SQ/ ansnk, esnk	78	(41.1)	78	(41.3)	0	(0.2)	70	(34.5)	70	(34.5)	0	(0)	0.22	0.20
Alanine transaminase level, IU/ L	LE / ALT	59.0	(40.0, 90.0)	59.0	(40.0, 88.0)	0	(0, -2)	74.0	$\begin{aligned} & (51.0, \\ & 138.0) \end{aligned}$	74.0	$\begin{aligned} & \text { (51.0, } \\ & \text { 138.0) } \end{aligned}$	0.0	$(0,0)$	<0.0001	<0.0001
Aspartate transaminse level, IU/ L	LE / AST	51.0	(33.0, 69.0)	51.0	(33.5, 69.0)	0	$(0.5,0)$	52.0	(37.0, 87.0)	52.0	(37.0, 87.0)	0	$(0,0)$	0.06	0.06
Albumin level	LE / ALB	4.0	(3.7, 4.2)	4.1	$(3.8,4.3)$	0.1	(0.1, 0.1)	4.2	(4.0, 4.4)	4.2	(4.0, 4.4)	0	$(0,0)$	<0.0001	<0.0001
Total bilirubin level, mg/ dL	LE / TBILI	0.6	$(0.4,0.8)$	0.6	(0.4, 0.8)	0	$(0,0)$	0.7	$(0.5,0.9)$	0.7	$(0.5,0.9)$	0	$(0,0)$	0.0008	0.0007
Hemoglobin level, g/ dL	LE / HGB	14.3	$(13.5,15.1)$	14.3	(13.5, 15.1)	0	$(0,0)$	15.1	(13.9, 15.9)	15.0	(13.9, 15.9)	-0.1	$(0,0)$	<0.0001	<0.0001
White blood cell count, 10^{3} cells/ mm^{3}	LE / WBC	5.8	(4.7, 7.4)	5.8	(4.7, 7.5)	0	$(0,0.1)$	6.2	(4.9, 7.4)	6.2	(4.9, 7.4)	0	$(0,0)$	0.09	0.08
HCV RNA level, x106 IU/ mL **	VLOAD / uload itt	6.4	(5.6, 6.7)	6.4	$(5.6,6.7)$	0	$(0,0)$	6.5	$(5.7,6.8)$	6.5	$(5.7,6.8)$	0	$(0,0)$	0.09	0.08

Primary Outcome. The study publication reported that the primary end point, sustained virologic response (SVR), was achieved in 28% of AA compared with 52% of CA patients ($P<0.0001$). Similarly, analyses of archived data indicated that SVR was achieved in 27% of AA compared with 52% of CA patients ($P<0.0001$). Selected univariable associations with SVR were analyzed for purposes of this DSIC. Results are presented in DSIC Table 2. Analyses of archived data indicated the following factors were associated with higher SVR: CA race, female sex, more than high school education, and lower weight. A history of diabetes was associated with lower response rates. Some laboratory measures were found to be possibly associated with lower response rates, including serum AST and WBC. Relative risks, 95\% confidence intervals, and P-values for these selected univariable associations were very similar to those published by the study group (DSIC Table 2).

DSIC Table 2^{\dagger}. Relationship between SVR and variables of interest: Selected Univariable Analyses ${ }^{7}$
${ }^{\dagger}$ analyses selected from publication Table 3, p. 475.

Variable	Univariable Analysis					P -value	
	Archived		Published		RR: Percent difference		
	Relative Risk	(95\% CI)	Relative Risk	(95\% CI)		Archived	Published
CA race	1.93	(1.48-2.51)	1.89	(1.46-2.46)	-2.1\%	<0.0001	<0.0001
Male sex	0.74	(0.59-0.94)	0.73	(0.58-0.93)	-1.4\%	0.02	0.01
Age, per 5 years	0.96	(0.89-1.03)	0.97	(0.89-1.03)	1.0\%	0.23	0.24
Education (<high school)	0.71	(0.55-0.93)	0.72	(0.55-0.94)	1.4\%	0.01	0.02
Weight (kg) per 5 kg	0.94	(0.91-0.97)	0.94	(0.91-0.97)	0.0\%	0.0003	0.0004
BMI, kg/ m ${ }^{2}$	0.98	(0.96-0.9995)	0.98	(0.96-1.00)	0.0\%	0.046	0.07
History of diabetes	0.49	(0.26-0.92)	0.49	(0.26-0.91)	0.0\%	0.03	0.02
History of hypertension	0.73	(0.55-0.98)	0.76	(0.57-1.01)	3.9\%	0.03	0.06
Current smoking	1.14	(0.89-1.45)	1.13	(0.89-1.45)	-0.9\%	0.30	0.31
Alanine transaminase level (IU) per 100 IU	1.05	(0.91-1.22)	1.05	(0.90-1.22)	0.0\%	0.49	0.53
Asparate transaminase level (IU) per 100 IU	0.75	(0.55-1.03)	0.75	(0.55-1.02)	0.0\%	0.07	0.06
Hemoglobin, g/ DL	0.95	(0.87-1.04)	0.95	(0.87-1.04)	0.0\%	0.30	0.26
White blood cells, per 10^{3} cells/ mm^{3}	1.05	(0.993-1.10)	1.05	(0.996-1.11)	0.0\%	0.09	0.07
Baseline viral level, $\log _{10} \mathrm{IU} / \mathrm{mL}$	0.78	(0.71-0.86)	0.76	(0.66-0.88)	-2.6\%	<0.0001	0.0002

${ }^{7}$ For purposes of the DSIC, generalized estimating equations (GEE) (PC-SAS: Proc Genmod, where dist=binomial, link $=l o g$) were used to estimate relative risk of univariable associations with SVR. The study publication does not explicitly state the statistical methods used to assess univariable associations. Small differences between archived and published results may be expected, due to differences in methods of estimation.

Notes

(1) Eight of 34 raw datasets were used for the current analysis. Additional datasets will be analyzed as part of dataset integrity checks for other main publications.

References

[1] Virahep-C Study Group (Hari S. Conjeevaram et al). Peginterferon and Ribavirin Treatment in African American and Caucasian American Patients With Hepatitis C Genotype 1. Gastroenterology 2006;131:470-477.

Attachment 1

"The full text of the article referenced will be provided to approved data requestors along with the data archived."

Hari S. Conjeevaram, Michael W. Fried, Lennox J. Jeffers, Norah A. Terrault, Thelma E. Wiley-Lucas, Nezam Afdhal, Robert S. Brown, Steven H. Belle, Jay H. Hoofnagle, David E. Kleiner, and Charles D. Howell, for the Virahep-C Study Group. Peginterferon and Ribavirin Treatment in African American and Caucasian American Patients With Hepatitis C Genotype 1.

Gastroenterology 2006;131:470-477

Attachment 2

SAS 9.1 Log for programming code submitted for the replication of results in Table 1 "Baseline Characteristics of Virahep-C Participants" Conjeevaram et.al. 2006

```
NOTE: Copyright (c) 2002-2003 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) 9.1 (TS1M3)
    Licensed to RESEARCH TRIANGLE INSTITUTE, Site 0047670011.
NOTE: This session is executing on the XP_PRO platform.
```

```
NOTE: SAS 9.1.3 Service Pack 3
NOTE: SAS initialization used:
    real time 2.30 seconds
    cpu time 0.32 seconds
```

$1 \quad$ options ps=55 ls=78 nonumber formchar='|----|+\---+=|-^<>*' mprint
orientation=portrait
1 ! ;
2
3 libname main 'Z:\05_Users\Sylvia\Virahep-C\main_study\mainstudy';
NOTE: Libref MAIN was successfully assigned as follows:
Engine: V9
Physical Name: Z:\05_Users \Sylvia\Virahep-C\main_study \backslash mainstudy
4 \%include 'Z:\05_Users \Sylvia\Virahep-C\vhepfmt.sas';
NOTE: Format ACTION has been output.
NOTE: Format AEVENT has been output.
NOTE: Format ALC has been output.
NOTE: Format ALL5NO has been output.
NOTE: Format ALL6NO has been output.
NOTE: Format ALWNEV has been output.
NOTE: Format BDYPN has been output.
NOTE: Format BETTER has been output.
NOTE: Format BIN has been output.
NOTE: Format BXSC has been output.
NOTE: Format CESD has been output.
NOTE: Format COMPBY has been output.
NOTE: Format DCHRS has been output.
NOTE: Format DIAB has been output.
NOTE: Format DISCD has been output.
NOTE: Format DRUGDS has been output.
NOTE: Format DRUGRL has been output.
NOTE: Format EDUC has been output.
NOTE: Format EVTYPE has been output.
NOTE: Format EXCPOR has been output.
NOTE: Format GFBC has been output.
NOTE: Format GRF has been output.
NOTE: Format GI has been output.
NOTE: Format HCVRES has been output.
NOTE: Format HERBCAT has been output.
NOTE: Format HISP has been output.
NOTE: Format HL1YR has been output.
NOTE: Format INCDEC has been output.
NOTE: Format INS has been output.
NOTE: Format LIMIT has been output.
NOTE: Format MARST has been output.
NOTE: Format MEDDC has been output.

```
NOTE: Format MISINT has been output.
NOTE: Format MISSM has been output.
NOTE: Format MISRIB has been output.
NOTE: Format NEVALL has been output.
NOTE: Format NEVER has been output.
NOTE: Format NEVOFT has been output.
NOTE: Format NEVWK has been output.
NOTE: Format NONALL has been output.
NOTE: Format NOTEXT has been output.
NOTE: Format POSNEG has been output.
NOTE: Format REMEM has been output.
NOTE: Format RESLV has been output.
NOTE: Format RISK has been output.
NOTE: Format SATDIS has been output.
NOTE: Format SATISF has been output.
NOTE: Format SEVER has been output.
NOTE: Format SEX has been output.
NOTE: Format SEXFUNC has been output.
NOTE: Format SMOKE has been output.
NOTE: Format SOC has been output.
NOTE: Format SOURCE has been output.
NOTE: Format STATIN has been output.
NOTE: Format STDYDC has been output.
NOTE: Format TIMEOP has been output.
NOTE: Format TMDC has been output.
NOTE: Format TMPT has been output.
NOTE: Format TMPTT has been output.
NOTE: Format TMPTDW has been output.
NOTE: Format TRFAL has been output.
NOTE: Format TTMPT has been output.
NOTE: Format USA has been output.
NOTE: Format VISIT has been output.
NOTE: Format VQUALDET has been output.
NOTE: Format WORK has been output.
NOTE: Format YESNO has been output.
NOTE: PROCEDURE FORMAT used (Total process time):
    real time 0.16 seconds
    cpu time 0.03 seconds
830
    libname analysis 'Z:\05_Users\Sylvia\Virahep-C\main_study\analysis';
NOTE: Libref ANALYSIS was successfully assigned as follows:
    Engine: V9
    Physical Name: Z:\05_Users\Sylvia\Virahep-C\main_study\analysis
        * define sample of 401 and perform bsln analyses *;
        data sc; set main.sc;
NOTE: There were 546 observations read from the data set MAIN.SC.
NOTE: The data set WORK.SC has 546 observations and 52 variables.
NOTE: DATA statement used (Total process time):
    real time 0.50 seconds
```

$$
\text { cpu time } 0.02 \text { seconds }
$$

 proc sort; by vhcid rsc;
 NOTE: There were 546 observations read from the data set WORK.SC. NOTE: The data set WORK.SC has 546 observations and 52 variables. NOTE: PROCEDURE SORT used (Total process time):

real time	0.01 seconds
cpu time	0.01 seconds

835
836
837

```
data sc; set sc; by vhcid rsc; if last.vhcid;
```

keep vhcid rsc cons; *cons = gave informed consent *;

NOTE: There were 546 observations read from the data set WORK.SC.
NOTE: The data set WORK.SC has 536 observations and 3 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.01 seconds

838
data demo; set main.se; keep vhcid rsc male racew--raceos wgtkg mxdiab mxlla
mxbp dob
838 ! doe age hgtin hgtcm bmi;
$839 \quad$ wgtkg=wgtlb/2.2;
840 if sex=1 then male=1;
841 else if sex=2 then male=0;
842 dob=mdy (dobm, dobd, doby);
843 doe=mdy (doem, doed, doey) ;
844 format dob doe MMDDYY10.;
845 age=round ((doe-dob)/365.25,0.1);
846 hgtcm=round ((hgtin*2.54),0.1);
847 bmi=wgtkg/(hgtcm*hgtcm/10000); ***weight kg / ht2 in m***;
NOTE: Missing values were generated as a result of performing an operation on missing values.

Each place is given by: (Number of times) at (Line): (Column).
17 at 839:14 30 at 846:9 30 at 846:21 5 at 847:12 30 at 847:19
NOTE: There were 552 observations read from the data set MAIN.SE.
NOTE: The data set WORK.DEMO has 552 observations and 20 variables.
NOTE: DATA statement used (Total process time):
real time $\quad 1.34$ seconds
cpu time 0.02 seconds

848
proc sort; by vhcid rsc; * rsc = rescreen *;
NOTE: There were 552 observations read from the data set WORK.DEMO.
NOTE: The data set WORK.DEMO has 552 observations and 20 variables.
NOTE: PROCEDURE SORT used (Total process time): real time 0.00 seconds cpu time 0.01 seconds

849

NOTE: There were 552 observations read from the data set WORK.DEMO. NOTE: The data set WORK.DEMO has 536 observations and 20 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.01 seconds

852
data screen; set main.sq; keep vhcid educ evsmk cursmk alc alcbe alcwi alclq;
NOTE: There were 430 observations read from the data set MAIN.SQ.
NOTE: The data set WORK.SCREEN has 430 observations and 8 variables.
NOTE: DATA statement used (Total process time):
real time 0.40 seconds
cpu time 0.02 seconds

853 proc sort; by vhcid;
854
NOTE: There were 430 observations read from the data set WORK.SCREEN.
NOTE: The data set WORK.SCREEN has 430 observations and 8 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time $\quad 0.02$ seconds

855 data labbase; set main.le; if tmpt=3;
NOTE: There were 7345 observations read from the data set MAIN.LE.
NOTE: The data set WORK.LABBASE has 401 observations and 80 variables.
NOTE: DATA statement used (Total process time):
real time 6.91 seconds
cpu time $\quad 0.06$ seconds

856 proc sort; by vhcid;
NOTE: There were 401 observations read from the data set WORK.LABBASE.
NOTE: The data set WORK.LABBASE has 401 observations and 80 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.00 seconds
cpu time $\quad 0.00$ seconds

857

```
data hcv_base; set main.vload;
```

858 if tmpt=3;
NOTE: There were 5247 observations read from the data set MAIN.VLOAD.

NOTE: The data set WORK.HCV_BASE has 401 observations and 13 variables.
NOTE: DATA statement used (Total process time):
real time $\quad 1.11$ seconds
cpu time $\quad 0.00$ seconds

859
860
861
proc sort; by vhcid;

* hepatic steatosis / fibrosis measures *;

NOTE: There were 401 observations read from the data set WORK.HCV_BASE.
NOTE: The data set WORK.HCV_BASE has 401 observations and 13 variables.
NOTE: PROCEDURE SORT used (Total process time):

$$
\text { real time } \quad 0.00 \text { seconds }
$$

$$
\text { cpu time } \quad 0.00 \text { seconds }
$$

data hepa; set main.pe;

NOTE: There were 429 observations read from the data set MAIN.PE.
NOTE: The data set WORK.HEPA has 429 observations and 50 variables.
NOTE: DATA statement used (Total process time):
real time 0.43 seconds
cpu time 0.01 seconds

863
864

NOTE: There were 429 observations read from the data set WORK.HEPA.
NOTE: The data set WORK.HEPA has 429 observations and 50 variables.
NOTE: PROCEDURE SORT used (Total process time):

real time	0.01 seconds
cpu time	0.00 seconds

865 data demobase; merge sc demo screen labbase(in=in1) hcv_base(in=in2) hepa;
866 by vhcid; if in1 or in2; * anyone with bsln lab or viral load data, $n=403$ *;
867 if vhcid^=295076; * found to be ineligible during course of study, even though has bsln and f/up data (DCC email 8/13/07) *;
868 if cons=1; * 292043 withdrew consent at bsln(cons=0), has bsln vload data,
869 but has no bsln lab or followup data ;
870 * THIS GIVES US FINAL N OF 401 ELIGIBLE (PRESUMABLY -- SINCE HAVE BSLN DATA
871 AND CONSENTED TO STUDY) *;
872 if educ>4 then hsorless=0; * high school or less *;
873 else if .<educ<=4 then hsorless=1;
874 log10vload=log10(vload_itt);
875 currentsmk=cursmk;
876 if evsmk in (0,.B) then currentsmk=0; *cursmk was set to n/a when evsmk=0 *;
877
878
run;
NOTE: Missing values were generated as a result of performing an operation on missing values.

Each place is given by: (Number of times) at (Line): (Column).

2 at 874:14
NOTE: There were 536 observations read from the data set WORK.SC.
NOTE: There were 536 observations read from the data set WORK.DEMO.
NOTE: There were 430 observations read from the data set WORK.SCREEN.
NOTE: There were 401 observations read from the data set WORK.LABBASE.
NOTE: There were 401 observations read from the data set WORK.HCV_BASE.
NOTE: There were 429 observations read from the data set WORK. HEPA.
NOTE: The data set WORK.DEMOBASE has 401 observations and 167 variables.
NOTE: DATA statement used (Total process time):
real time 0.03 seconds
cpu time 0.03 seconds

879
880
DATA ANALYSIS.DEMOBASE; SET DEMOBASE; RUN;
NOTE: There were 401 observations read from the data set WORK.DEMOBASE.
NOTE: The data set ANALYSIS.DEMOBASE has 401 observations and 167 variables.
NOTE: DATA statement used (Total process time):
real time 1.51 seconds
cpu time 0.04 seconds

881
882
883
884
885
886
887
new;
888

NOTE: PROCEDURE PRINTTO used (Total process time):
real time 0.14 seconds
cpu time 0.00 seconds
proc freq data=demobase; tables racew*raceb/missing; run;
NOTE: There were 401 observations read from the data set WORK.DEMOBASE.
NOTE: The PROCEDURE FREQ printed page 1.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.07 seconds
cpu time 0.01 seconds

890 proc freq data=demobase; tables (male hsorless mxdiab mxbp currentsmk)*racew/chisq
890 ! exact; run;
NOTE: There were 401 observations read from the data set WORK.DEMOBASE.
NOTE: The PROCEDURE FREQ printed pages 2-7.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.05 seconds

```
cpu time 0.03 seconds
```

```
891 proc univariate data=demobase plot normal; class racew; var age wgtkg bmi
alt ast alb
891 ! tbili hgb wbc log10vload; run;
NOTE: The PROCEDURE UNIVARIATE printed pages 8-77.
NOTE: PROCEDURE UNIVARIATE used (Total process time):
    real time 0.28 seconds
    cpu time 0.05 seconds
```

```
892 proc nparlway wilcoxon data=demobase; class racew; var age wgtkg bmi alt ast
alb
892 ! tbili hgb wbc log10vload; run;
NOTE: There were 401 observations read from the data set WORK.DEMOBASE.
NOTE: The PROCEDURE NPAR1WAY printed pages 78-87.
NOTE: PROCEDURE NPAR1WAY used (Total process time):
    real time 0.04 seconds
    cpu time 0.03 seconds
893 proc printto; run;
NOTE: PROCEDURE PRINTTO used (Total process time):
    real time 0.08 seconds
    cpu time 0.00 seconds
894
    **************************************************************
NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414
NOTE: The SAS System used:
    real time 16.70 seconds
    cpu time 0.82 seconds
```


Attachment 3

SAS 9.1 Log for programming code submitted for the replication of selected results in Table 3
"Relationship Between SVR and Each Variable of Interest in Univariable and Multivariable Analysis"

Conjeevaram et.al. 2006

```
NOTE: Copyright (c) 2002-2003 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) 9.1 (TS1M3)
    Licensed to RESEARCH TRIANGLE INSTITUTE, Site 0047670011.
NOTE: This session is executing on the XP_PRO platform.
```

```
NOTE: SAS 9.1.3 Service Pack 3
NOTE: SAS initialization used:
    real time 3.93 seconds
    cpu time 0.32 seconds
```

1 options ps=55 ls=78 nonumber formchar='|----|+\---+=|-^<>*' mprint
orientation=portrait
1 ! ;
2
3 libname main 'Z:\05_Users\Sylvia\Virahep-C\main_study\mainstudy';
NOTE: Libref MAIN was successfully assigned as follows:
Engine: V9
Physical Name: Z:\05_Users \Sylvia\Virahep-C\main_study \backslash mainstudy
4 libname library 'Z:\05_Users \Sylvia\Virahep-C\main_study';
NOTE: Libref LIBRARY was successfully assigned as follows:
Engine: V9
Physical Name: Z:\05_Users\Sylvia\Virahep-C\main_study
$5 \quad$ libname analysis 'Z:\05_Users 5 Sylvia\Virahep-C\main_study \backslash analysis';
NOTE: Libref ANALYSIS was successfully assigned as follows:
Engine: V9
Physical Name: Z:\05_Users \Sylvia\Virahep-C\main_study\analysis
6
7 DATA DEMOBASE; SET ANALYSIS.DEMOBASE; RUN;
NOTE: There were 401 observations read from the data set ANALYSIS.DEMOBASE.
NOTE: The data set WORK.DEMOBASE has 401 observations and 167 variables.
NOTE: DATA statement used (Total process time):
real time 4.76 seconds
cpu time $\quad 0.06$ seconds
8
9
10
data hcv_fuwk24; set main.vload;
if tmpt=25; *f-up wk 24 *;
NOTE: There were 5247 observations read from the data set MAIN.VLOAD.
NOTE: The data set WORK.HCV_FUWK24 has 326 observations and 13 variables.
NOTE: DATA statement used (Total process time):
real time 3.34 seconds
cpu time 0.03 seconds
proc sort; by vhcid;
*note: DATASET VLOAD contains both qualitative and quantitative results *;

NOTE: There were 326 observations read from the data set WORK.HCV_FUWK24.
NOTE: The data set WORK.HCV_FUWK24 has 326 observations and 13 variables.
NOTE: PROCEDURE SORT used (Total process time):

real time	0.01 seconds
cpu time	0.01 seconds

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
data all24_fu; merge demobase(in=in1 keep=vhcid age bmi male racew raceb hsorless mxdiab mxbp currentsmk wgtkg wbc alt ast hgb log10vload vload vload_itt gluf insf fatsc2 rename $=(\log 10 v l o a d=b l o g 10 v l o a d ~ v l o a d=b v l o a d ~$ vload_itt=bvload_itt)) hcv_fuwk24(in=in2); by vhcid;

* Defn of primary endpoint: an SVR defined as the absence of detectable HCV RNA in serum 24 weeks after therapy was stopped... At week 24 and time points thereafter, missing HCV RNA data were considered a nonresponse (Conjeevaram 2006, p. 471);
*initially set $S V R$ to VQUAL=0 at f-up wk 24 *; svr=1-vqual;
if in1 and not in2 then do; svr=0; flag1=1; end;
*no data at fuwk 24 -- set to non-response *;
if in2 and vqual in (.,.C) then do;
if vload_itt>599 then svr=0; *detectable viral load using quantitative tests *; else do; svr=0; flag2=1; end;
* vload_itt=599 is an unknown response, so set to non-response*; end;

```
    if in1; * keep all eligible in dataset *;
```

 if racew=1 then race='W'; else if racew=0 then race='B';
 age_5=age/5;
 wgtkg_5=wgtkg/5;
 alt_100=alt/100;
 ast_100=ast/100;
 * steatosis outcome (based on FATSC2, in main.pe) *;
 steat=fatsc2;
 if fatsc2 in \((2,3,4)\) then steat=2;
 homa=(insf*gluf/18)/22.5;
 * per email DCC (8/13/07): if HCV data not available at fuwk24,
 then glean from later visits *;
 NOTE: Missing values were generated as a result of performing an operation on missing values.

Each place is given by: (Number of times) at (Line): (Column).
186 at 29:10 3 at 43:16 2 at 44:14 2 at 45:14 59 at 49:13
NOTE: There were 401 observations read from the data set WORK.DEMOBASE.
NOTE: There were 326 observations read from the data set WORK.HCV_FUWK24.
NOTE: The data set WORK.ALL24_FU has 401 observations and 43 variables.

The SAS System
NOTE: DATA statement used (Total process time):
real time 0.95 seconds
cpu time 0.01 seconds

53

```
data postfu_wk24; set main.vload;
            if tmpt in (26,27,33);
```

NOTE: There were 5247 observations read from the data set MAIN.VLOAD.
NOTE: The data set WORK.POSTFU_WK24 has 220 observations and 13 variables.
NOTE: DATA statement used (Total process time):
real time 3.37 seconds
cpu time 0.03 seconds

55 ! proc sort; by vhcid tmpt;
56
NOTE: There were 220 observations read from the data set WORK.POSTFU_WK24.
NOTE: The data set WORK.POSTFU_WK24 has 220 observations and 13 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time 0.00 seconds

57
proc freq data=all24_fu; where flag1=1; tables vhcid/out=nohcv_fu24;
NOTE: There were 75 observations read from the data set WORK.ALL24_FU.
WHERE flag1=1;
NOTE: The data set WORK.NOHCV_FU24 has 75 observations and 3 variables.
NOTE: The PROCEDURE FREQ printed pages 1-2.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.12 seconds
cpu time 0.03 seconds

58
proc freq data=all24_fu; where flag2=1; tables vhcid/out=misshcv_fu24;
run;
NOTE: There were 3 observations read from the data set WORK.ALL24_FU. WHERE flag2=1;
NOTE: The data set WORK.MISSHCV_FU24 has 3 observations and 3 variables.
NOTE: The PROCEDURE FREQ printed page 3.
NOTE: PROCEDURE FREQ used (Total process time):
real time 0.01 seconds cpu time $\quad 0.00$ seconds

60

```
            * pick up later data for those with no data at fuwk24 *;
                data nohcv_fu24_post; merge nohcv_fu24(in=in1) postfu_wk24(in=in2);
            by vhcid; if in1 and in2;
            svr=1-vqual;
```

The SAS System
64
if vqual=. then do; if vload_itt>599 then svr=0; end; run;
NOTE: Missing values were generated as a result of performing an operation on missing values.

Each place is given by: (Number of times) at (Line): (Column).
2 at 63:10
NOTE: There were 75 observations read from the data set WORK.NOHCV_FU24.
NOTE: There were 220 observations read from the data set WORK.POSTFU_WK24.
NOTE: The data set WORK.NOHCV_FU24_POST has 5 observations and 16 variables.
NOTE: DATA statement used (Total process time):
real time 0.67 seconds
cpu time 0.01 seconds

65
66
67
68
69
70
71
72

```
/* * check results: ;
proc print; by vhcid; id vhcid; var tmpt vqual--vload_itt svr;
                    run; */
    * pick up later data for those missing data at fuwk24 *;
data misshcv_fu24_post; merge misshcv_fu24(in=in1) postfu_wk24(in=in2);
    by vhcid; if in1 and in2;
    svr=1-vqual;
    if vqual=. then do; if vload_itt>599 then svr=0; end; run;
```

NOTE: There were 3 observations read from the data set WORK.MISSHCV_FU24.
NOTE: There were 220 observations read from the data set WORK.POSTFU_WK24.
NOTE: The data set WORK.MISSHCV_FU24_POST has 3 observations and 16 variables.
NOTE: DATA statement used (Total process time):
real time 0.64 seconds
cpu time $\quad 0.00$ seconds

```
/* * check results: ;
proc print data=misshcv_fu24_post; by vhcid;
            id vhcid; var tmpt vqual--vload_itt svr; run; */
data all24_fu2; merge all24_fu nohcv_fu24_post(keep=vhcid svr)
                    misshcv_fu24_post(keep=vhcid svr);
by vhcid;
run;
```

NOTE: There were 401 observations read from the data set WORK.ALL24_FU.
NOTE: There were 5 observations read from the data set WORK.NOHCV_FU24_POST.
NOTE: There were 3 observations read from the data set WORK.MISSHCV_FU24_POST.
NOTE: The data set WORK.ALL24_FU2 has 401 observations and 43 variables.
NOTE: DATA statement used (Total process time):
real time 0.63 seconds
cpu time $\quad 0.00$ seconds

81
82 * final analysis of race by SVR *;
83 proc freq data=all24_fu2; tables race*svr/chisq exact; run;
NOTE: There were 401 observations read from the data set WORK.ALL24_FU2.

```
NOTE: The PROCEDURE FREQ printed page 4.
NOTE: PROCEDURE FREQ used (Total process time):
    real time 0.01 seconds
    cpu time 0.00 seconds
```

```
        ** use log-binomial for all continuous to get RR **;
        * for replication of table 2 *;
        %macro relrisks(covar);
        proc genmod data=all24_fu2 descending;
        model svr=&covar/dist = binomial link=log type3;
        estimate "Beta &covar" &covar 1 -1/ exp;
        run;
        %mend;
        * the warning " more coefficients specified than levels" pops up when an
        estimate of the beta coefficient (RR) -- with contrast levels 1 -1 --
        is requested for a trend test, this does not seem to affect estimates *;
        proc printto
        print='Z:\05_Users\Sylvia\Virahep-C\main_study\vhepc_svr.out' new;
        title replication of selected results in table 3: SVR<=>variables of interest;
        %relrisks(racew);
NOTE: PROCEDURE PRINTTO used (Total process time):
    real time 0.15 seconds
    cpu time 0.00 seconds
```

```
MPRINT(RELRISKS): proc genmod data=all24_fu2 descending;
MPRINT(RELRISKS): model svr=racew/dist = binomial link=log type3;
MPRINT(RELRISKS): estimate "Beta racew" racew 1 -1/ exp;
MPRINT(RELRISKS): run;
```

NOTE: PROC GENMOD is modeling the probability that svr='1'.
NOTE: Algorithm converged.
NOTE: The scale parameter was held fixed.
WARNING: More coefficients than levels specified for effect RACEW. Some coefficients
will be
ignored.
NOTE: The PROCEDURE GENMOD printed pages 5-6.
NOTE: PROCEDURE GENMOD used (Total process time):
real time 0.03 seconds
cpu time 0.03 seconds
101 \%relrisks(male);
MPRINT (RELRISKS): proc genmod data=all24_fu2 descending;
MPRINT (RELRISKS): model svr=male/dist = binomial link=log type3;
MPRINT (RELRISKS): estimate "Beta male" male 1 -1/ exp;
MPRINT (RELRISKS) : run;
NOTE: PROC GENMOD is modeling the probability that svr='1'.
NOTE: Algorithm converged.

```
NOTE: The scale parameter was held fixed.
be ignored.
NOTE: The PROCEDURE GENMOD printed pages 7-8.
NOTE: PROCEDURE GENMOD used (Total process time):
    real time 0.03 seconds
    cpu time 0.03 seconds
```

WARNING: More coefficients than levels specified for effect male. Some coefficients will
102 \%relrisks(age_5);
MPRINT (RELRISKS): proc genmod data=all24_fu2 descending;
MPRINT (RELRISKS): model svr=age_5/dist = binomial link=log type3;
MPRINT (RELRISKS) : estimate "Beta age_5" age_5 1-1/ exp;
MPRINT (RELRISKS) : run;
NOTE: PROC GENMOD is modeling the probability that svr='1'.
NOTE: Algorithm converged.
NOTE: The scale parameter was held fixed.
WARNING: More coefficients than levels specified for effect age_5. Some coefficients
will be ignored.
NOTE: The PROCEDURE GENMOD printed pages 9-10.
NOTE: PROCEDURE GENMOD used (Total process time):
real time 0.03 seconds
cpu time 0.01 seconds
103 \%relrisks(hsorless);
MPRINT (RELRISKS): proc genmod data=all24_fu2 descending;
MPRINT (RELRISKS): model svr=hsorless/dist = binomial link=log type3;
MPRINT(RELRISKS): estimate "Beta hsorless" hsorless 1 -1/ exp;
MPRINT (RELRISKS) : run;
NOTE: PROC GENMOD is modeling the probability that svr='1'.
NOTE: Algorithm converged.
NOTE: The scale parameter was held fixed.
WARNING: More coefficients than levels specified for effect hsorless. Some coefficients
will be ignored.
NOTE: The PROCEDURE GENMOD printed pages 11-12.
NOTE: PROCEDURE GENMOD used (Total process time):
real time 0.01 seconds
cpu time $\quad 0.01$ seconds
104 \%relrisks(wgtkg_5);
MPRINT (RELRISKS): proc genmod data=all24_fu2 descending;
MPRINT (RELRISKS): model svr=wgtkg_5/dist = binomial link=log type3;
MPRINT (RELRISKS): estimate "Beta wgtkg_5" wgtkg_5 1-1/ exp;
MPRINT (RELRISKS) : run;
NOTE: PROC GENMOD is modeling the probability that svr='1'.
NOTE: Algorithm converged.
NOTE: The scale parameter was held fixed.
WARNING: More coefficients than levels specified for effect wgtkg_5. Some coefficients
will be

```
    ignored.
NOTE: The PROCEDURE GENMOD printed pages 13-14.
NOTE: PROCEDURE GENMOD used (Total process time):
    real time 0.01 seconds
    cpu time 0.01 seconds
105 %relrisks(bmi);
MPRINT(RELRISKS): proc genmod data=all24_fu2 descending;
MPRINT(RELRISKS): model svr=bmi/dist = binomial link=log type3;
MPRINT(RELRISKS): estimate "Beta bmi" bmi 1 -1/ exp;
MPRINT(RELRISKS): run;
NOTE: PROC GENMOD is modeling the probability that svr='1'.
NOTE: Algorithm converged.
NOTE: The scale parameter was held fixed.
WARNING: More coefficients than levels specified for effect bmi. Some coefficients will
be ignored.
NOTE: The PROCEDURE GENMOD printed pages 15-16.
NOTE: PROCEDURE GENMOD used (Total process time):
    real time 0.01 seconds
    cpu time 0.01 seconds
```

```
106 %relrisks(mxdiab);
```

106 %relrisks(mxdiab);
MPRINT(RELRISKS): proc genmod data=all24_fu2 descending;
MPRINT(RELRISKS): proc genmod data=all24_fu2 descending;
MPRINT(RELRISKS): model svr=mxdiab/dist = binomial link=log type3;
MPRINT(RELRISKS): model svr=mxdiab/dist = binomial link=log type3;
MPRINT(RELRISKS): estimate "Beta mxdiab" mxdiab 1 -1/ exp;
MPRINT(RELRISKS): estimate "Beta mxdiab" mxdiab 1 -1/ exp;
MPRINT(RELRISKS): run;
MPRINT(RELRISKS): run;
NOTE: PROC GENMOD is modeling the probability that svr='1'.
NOTE: PROC GENMOD is modeling the probability that svr='1'.
NOTE: Algorithm converged.
NOTE: Algorithm converged.
NOTE: The scale parameter was held fixed.
NOTE: The scale parameter was held fixed.
WARNING: More coefficients than levels specified for effect MXDIAB. Some coefficients
WARNING: More coefficients than levels specified for effect MXDIAB. Some coefficients
will be ignored.
will be ignored.
NOTE: The PROCEDURE GENMOD printed pages 17-18.
NOTE: The PROCEDURE GENMOD printed pages 17-18.
NOTE: PROCEDURE GENMOD used (Total process time):
NOTE: PROCEDURE GENMOD used (Total process time):
real time 0.01 seconds
real time 0.01 seconds
cpu time 0.01 seconds
cpu time 0.01 seconds
107 %relrisks(mxbp);
MPRINT(RELRISKS): proc genmod data=all24_fu2 descending;
MPRINT(RELRISKS): model svr=mxbp/dist = binomial link=log type3;
MPRINT(RELRISKS): estimate "Beta mxbp" mxbp 1 -1/ exp;
MPRINT (RELRISKS): run;
NOTE: PROC GENMOD is modeling the probability that svr='1'.
NOTE: Algorithm converged.
NOTE: The scale parameter was held fixed.
WARNING: More coefficients than levels specified for effect MXBP. Some coefficients will
be ignored.
NOTE: The PROCEDURE GENMOD printed pages 19-20.

```
```

NOTE: PROCEDURE GENMOD used (Total process time):
real time 0.03 seconds
cpu time 0.01 seconds

```
```

108 %relrisks(currentsmk);
MPRINT(RELRISKS): proc genmod data=all24_fu2 descending;
MPRINT(RELRISKS): model svr=currentsmk/dist = binomial link=log type3;
MPRINT(RELRISKS): estimate "Beta currentsmk" currentsmk 1 -1/ exp;
MPRINT(RELRISKS): run;
NOTE: PROC GENMOD is modeling the probability that svr='1'.
NOTE: Algorithm converged.
NOTE: The scale parameter was held fixed.
WARNING: More coefficients than levels specified for effect currentsmk. Some
coefficients will be ignored.
NOTE: The PROCEDURE GENMOD printed pages 21-22.
NOTE: PROCEDURE GENMOD used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

```
109 \%relrisks(alt_100);
MPRINT (RELRISKS): proc genmod data=all24_fu2 descending;
MPRINT (RELRISKS): model svr=alt_100/dist = binomial link=log type3;
MPRINT(RELRISKS): estimate "Beta alt_100" alt_100 1-1/ exp;
MPRINT (RELRISKS) : run;
NOTE: PROC GENMOD is modeling the probability that svr='1'.
NOTE: Algorithm converged.
NOTE: The scale parameter was held fixed.
WARNING: More coefficients than levels specified for effect alt_100. Some coefficients
will be ignored.
NOTE: The PROCEDURE GENMOD printed pages 23-24.
NOTE: PROCEDURE GENMOD used (Total process time):
    real time 0.03 seconds
    cpu time \(\quad 0.01\) seconds
```

110 %relrisks(ast_100);
MPRINT(RELRISKS): proc genmod data=all24_fu2 descending;
MPRINT(RELRISKS): model svr=ast_100/dist = binomial link=log type3;
MPRINT(RELRISKS): estimate "Beta ast_100" ast_100 1 -1/ exp;
MPRINT(RELRISKS): run;

```
NOTE: PROC GENMOD is modeling the probability that svr='1'.
NOTE: Algorithm converged.
NOTE: The scale parameter was held fixed.
WARNING: More coefficients than levels specified for effect ast_100. Some coefficients
will be ignored.
NOTE: The PROCEDURE GENMOD printed pages 25-26.
NOTE: PROCEDURE GENMOD used (Total process time):
    real time 0.01 seconds
```

cpu time 0.01 seconds

```
\%relrisks (hgb);
MPRINT (RELRISKS): proc genmod data=all24_fu2 des
MPRINT (RELRISKS): model svr=hgb/dist = binomial
MPRINT (RELRISKS): estimate "Beta hgb" hgb 1 -1/
MPRINT (RELRISKS): run;
NOTE: PROC GENMOD is modeling the probability that
NOTE: Algorithm converged.
NOTE: The scale parameter was held fixed.
WARNING: More coefficients than levels specified
be ignored.
NOTE: The PROCEDURE GENMOD printed pages 27-28.
NOTE: PROCEDURE GENMOD used (Total process time):
real time
cpu time
\(112 \quad\) orelrisks(wbc);
MPRINT (RELRISKS): proc genmod data=all24_fu2 descending;
MPRINT(RELRISKS): model svr=wbc/dist = binomial link=log type3;
MPRINT(RELRISKS): estimate "Beta wbc" wbc 1 -1/ exp;
MPRINT (RELRISKS): run;
```

NOTE: PROC GENMOD is modeling the probability that svr='1'.
NOTE: Algorithm converged.
NOTE: The scale parameter was held fixed.
WARNING: More coefficients than levels specified for effect WBC. Some coefficients will
be ignored.
NOTE: The PROCEDURE GENMOD printed pages 29-30.
NOTE: PROCEDURE GENMOD used (Total process time):
real time 0.03 seconds
cpu time 0.03 seconds

```
113 \%relrisks(blog10vload);
MPRINT(RELRISKS): proc genmod data=all24_fu2 descending;
MPRINT (RELRISKS): model svr=blog10vload/dist = binomial link=log type3;
MPRINT (RELRISKS): estimate "Beta blog10vload" blog10vload 1 -1/ exp;
MPRINT (RELRISKS) : run;
NOTE: PROC GENMOD is modeling the probability that svr='1'.
NOTE: Algorithm converged.
NOTE: The scale parameter was held fixed.
WARNING: More coefficients than levels specified for effect bloglovload. Some
coefficients will be ignored.
NOTE: The PROCEDURE GENMOD printed pages 31-32.
NOTE: PROCEDURE GENMOD used (Total process time):
    real time \(\quad 0.01\) seconds
    cpu time 0.01 seconds
```

1 1 4 ~ p r o c ~ p r i n t t o ; ~ r u n ;
NOTE: PROCEDURE PRINTTO used (Total process time):
real time 0.07 seconds
cpu time 0.00 seconds
NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414
NOTE: The SAS System used:
real time 21.46 seconds
cpu time 0.93 seconds

```

\section*{Attachment 4}

SAS 9.1 Output for programming code submitted for the replication of results in Table 1
"Baseline Characteristics of Virahep-C Participants" Conjeevaram et.al. 2006
```

table 1: analysis of baseline factors
The FREQ Procedure
Table of RACEW by RACEB
RACEW(White or Caucasian)
RACEB(Black or African American)
Frequency
Percent
Row Pct
Col Pct |No |Yes | Total
No No-----+---------+---------+
|}\begin{array}{rlr}{0.00}\&{48.88}
{0.00}\&{100.00}
{0.00}\&{100.00}
-----------+---------+--------++

51.12	0.00		
100.00	0.00		
100.00	0.00	51.12	

Total	205	196	401

```
```

 table 1: analysis of baseline factors
    ```
                    The FREQ Procedure
            Table of male by RACEW
                        male RACEW(White or Caucasian)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Frequency \\
Percent \\
Row Pct \\
Col Pct
\end{tabular} & No & Yes & Total \\
\hline \multirow[t]{4}{*}{0} & 69 & 71 & 140 \\
\hline & 17.21 & 17.71 & 34.91 \\
\hline & 49.29 & 50.71 & \\
\hline & 35.20 & 34.63 & \\
\hline \multirow[t]{4}{*}{1} & 127 & 134 & 261 \\
\hline & 31.67 & 33.42 & 65.09 \\
\hline & 48.66 & 51.34 & \\
\hline & 64.80 & 65.37 & \\
\hline \multirow[t]{2}{*}{Total} & 196 & 205 & 401 \\
\hline & 48.88 & 51.12 & 100.00 \\
\hline
\end{tabular}

Statistics for Table of male by RACEW
\begin{tabular}{|c|c|c|c|}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 0.0143 & 0.9047 \\
\hline Likelihood Ratio Chi-Square & 1 & 0.0143 & 0.9047 \\
\hline Continuity Adj. Chi-Square & 1 & 0.0002 & 0.9881 \\
\hline Mantel-Haenszel Chi-Square & 1 & 0.0143 & 0.9049 \\
\hline Phi Coefficient & & 0.0060 & \\
\hline Contingency Coefficient & & 0.0060 & \\
\hline Cramer's V & & 0.0060 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Cell (1,1) Frequency (F) & 69 \\
\hline Left-sided Pr <= F & 0.5889 \\
\hline Right-sided \(\operatorname{Pr}>=\mathrm{F}\) & 0.4940 \\
\hline Table Probability (P) & 0.0828 \\
\hline Two -sided Pr <= P & 0.9169 \\
\hline
\end{tabular}
```

table 1: analysis of baseline factors
The FREQ Procedure
Table of hsorless by RACEW
hsorless RACEW(White or Caucasian)

| Frequency
 Percent
 Row Pct
 Col Pct | No | \|Yes | Total |
| :---: | :---: | :---: | :---: |
| 0 | 104 | 132 | 236 |
| | 26.33 | 33.42 | 59.75 |
| | 44.07 | 55.93 | |
| | 54.17 | 65.02 | |
| 1 | 88 | 71 | 159 |
| | 22.28 | 17.97 | 40.25 |
| | 55.35 | 44.65 | |
| | 45.83 | 34.98 | |
| Total | 192 | 203 | 395 |
| | 48.61 | 51.39 | 100.00 |

Frequency Missing = 6

```
table 1: analysis of baseline factors

The FREQ Procedure
Statistics for Table of hsorless by RACEW
\begin{tabular}{|c|c|c|c|}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 4.8371 & 0.0279 \\
\hline Likelihood Ratio Chi-Square & 1 & 4.8446 & 0.0277 \\
\hline Continuity Adj. Chi-Square & 1 & 4.3961 & 0.0360 \\
\hline Mantel-Haenszel Chi-Square & 1 & 4.8248 & 0.0281 \\
\hline Phi Coefficient & & -0.1107 & \\
\hline Contingency Coefficient & & 0.1100 & \\
\hline Cramer's V & & -0.1107 & \\
\hline
\end{tabular}


Table of MXDIAB by RACEW
MXDIAB (Med history diabetes)
RACEW (White or Caucasian)

```

 table 1: analysis of baseline factors
    ```
                        The FREQ Procedure
Statistics for Table of MXDIAB by RACEW
\begin{tabular}{|c|c|c|c|}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 13.5987 & 0.0002 \\
\hline Likelihood Ratio Chi-Square & 1 & 14.2166 & 0.0002 \\
\hline Continuity Adj. Chi-Square & 1 & 12.3839 & 0.0004 \\
\hline Mantel-Haenszel Chi-Square & 1 & 13.5648 & 0.0002 \\
\hline Phi Coefficient & & -0.1842 & \\
\hline Contingency Coefficient & & 0.1811 & \\
\hline Cramer's V & & -0.1842 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Cell (1,1) Frequency (F) & 166 \\
\hline Left-sided Pr <= F & \(1.694 \mathrm{E}-04\) \\
\hline Right-sided Pr >= F & 1.0000 \\
\hline Table Probability (P) & \(1.297 \mathrm{E}-04\) \\
\hline Two-sided \(\operatorname{Pr}<=\mathrm{P}\) & 2.969E-04 \\
\hline
\end{tabular}

Table of MXBP by RACEW
MXBP (Med hx hypertension)
RACEW (White or Caucasian)
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{RACEW (White or Caucasian)} \\
\hline \multicolumn{4}{|l|}{Frequency} \\
\hline \multicolumn{4}{|l|}{Percent} \\
\hline \multicolumn{4}{|l|}{Row Pct} \\
\hline Col Pct & No & Yes & Total \\
\hline \multirow{5}{*}{No} & & & \\
\hline & 111 & 162 & 273 \\
\hline & 27.68 & 40.40 & 68.08 \\
\hline & 40.66 & 59.34 & \\
\hline & 56.63 & 79.02 & \\
\hline \multirow[t]{4}{*}{Yes} & 85 & 43 & 128 \\
\hline & 21.20 & 10.72 & 31.92 \\
\hline & 66.41 & 33.59 & \\
\hline & 43.37 & 20.98 & \\
\hline \multirow[t]{2}{*}{Total} & 196 & 205 & 401 \\
\hline & 48.88 & 51.12 & 100.00 \\
\hline
\end{tabular}
```

 table 1: analysis of baseline factors
    ```

The FREQ Procedure
Statistics for Table of MXBP by RACEW
\begin{tabular}{|c|c|c|c|}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 23.1184 & <. 0001 \\
\hline Likelihood Ratio Chi-Square & 1 & 23.4215 & <.0001 \\
\hline Continuity Adj. Chi-Square & 1 & 22.0995 & <.0001 \\
\hline Mantel-Haenszel Chi-Square & 1 & 23.0607 & <.0001 \\
\hline Phi Coefficient & & -0.2401 & \\
\hline Contingency Coefficient & & 0.2335 & \\
\hline Cramer's V & & -0.2401 & \\
\hline
\end{tabular}


Table of currentsmk by RACEW
currentsmk RACEW (White or Caucasian)

```

 table 1: analysis of baseline factors
    ```
            The FREQ Procedure
Statistics for Table of currentsmk by RACEW
\begin{tabular}{|c|c|c|c|}
\hline Statistic & DF & Value & Prob \\
\hline Chi-Square & 1 & 1.8044 & 0.1792 \\
\hline Likelihood Ratio Chi-Square & 1 & 1.8047 & 0.1791 \\
\hline Continuity Adj. Chi-Square & 1 & 1.5354 & 0.2153 \\
\hline Mantel-Haenszel Chi-Square & 1 & 1.7998 & 0.1797 \\
\hline Phi Coefficient & & -0.0678 & \\
\hline Contingency Coefficient & & 0.0676 & \\
\hline Cramer's V & & -0.0678 & \\
\hline
\end{tabular}

```

 table 1: analysis of baseline factors
    ```
            The UNIVARIATE Procedure
                    Variable: age
                RACEW = No

Moments
\begin{tabular}{lrlr} 
N & 196 & Sum Weights & 196 \\
Mean & 49.0673469 & Sum Observations & 9617.2 \\
Std Deviation & 7.19345537 & Variance & 51.7458001 \\
Skewness & 0.19652272 & Kurtosis & 0.98649779 \\
Uncorrected SS & 481980.92 & Corrected SS & 10090.431 \\
Coeff Variation & 14.6603715 & Std Error Mean & 0.51381824
\end{tabular}

Basic Statistical Measures
\begin{tabular}{lrlr}
\multicolumn{2}{c}{ Location } & \multicolumn{2}{c}{ Variability } \\
Mean & 49.06735 & Std Deviation & 7.19346 \\
Median & 49.15000 & Variance & 51.74580 \\
Mode & 49.20000 & Range & 42.80000 \\
& & Interquartile Range & 7.70000
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Test & \multicolumn{2}{|l|}{-Statistic-} & \multicolumn{3}{|l|}{-----p Value------} \\
\hline Student's t & t & 95.49553 & \(\mathrm{Pr}>\) & & <. 0001 \\
\hline Sign & M & 98 & \(\operatorname{Pr}>=\) & & <. 0001 \\
\hline Signed Rank & S & 9653 & \(\operatorname{Pr}>=\) & S & <.0001 \\
\hline
\end{tabular}
Quantiles (Definition 5)
    Quantile Estimate
    10 0\% Max 70.40
    99\% 69.50
    95\% 61.70
    90\% 57.90
    75\% Q3 53.00
    50\% Median 49.15
    25\% Q1 45.30
    \(10 \% \quad 39.80\)
    5\% 35.90
    \(1 \% \quad 31.50\)
    0\% Min 27.60
```

table 1: analysis of baseline factors

```
The UNIVARIATE Procedure
            Variable: age
                RACEW = No
                Extreme Observations
----Lowest----
\begin{tabular}{rrrr} 
Value & Obs & Value & Obs \\
27.6 & 86 & 67.4 & 135 \\
31.5 & 145 & 68.7 & 147 \\
32.7 & 157 & 68.9 & 312 \\
33.9 & 49 & 69.5 & 78 \\
34.1 & 205 & 70.4 & 151
\end{tabular}
```

 table 1: analysis of baseline factors
    ```
            The UNIVARIATE Procedure
                    Variable: age
                        RACEW = Yes

Moments
\begin{tabular}{lrlr} 
N & 205 & Sum Weights & 205 \\
Mean & 47.3253659 & Sum Observations & 9701.7 \\
Std Deviation & 8.50517377 & Variance & 72.3379809 \\
Skewness & -0.3471691 & Kurtosis & 0.97855102 \\
Uncorrected SS & 473893.45 & Corrected SS & 14756.9481 \\
Coeff Variation & 17.9717021 & Std Error Mean & 0.5940271
\end{tabular}

Basic Statistical Measures
\begin{tabular}{lllr}
\multicolumn{2}{c}{ Location } & \multicolumn{2}{c}{ Variability } \\
Mean & 47.32537 & Std Deviation & 8.50517 \\
Median & 48.20000 & Variance & 72.33798 \\
Mode & 56.70000 & Range & 48.20000 \\
& & Interquartile Range & 9.50000
\end{tabular}

\begin{tabular}{lr} 
Quantiles & (Definition 5 ) \\
Quantile & Estimate \\
100\% Max & 70.7 \\
\(99 \%\) & 69.6 \\
\(95 \%\) & 59.2 \\
\(90 \%\) & 56.7 \\
\(75 \%\) Q3 & 52.4 \\
\(50 \%\) Median & 48.2 \\
\(25 \%\) Q1 & 42.9 \\
\(10 \%\) & 37.3 \\
\(5 \%\) & 31.8 \\
\(1 \%\) & 24.1 \\
\(0 \%\) Min & 22.5
\end{tabular}
```

table 1: analysis of baseline factors

```
The UNIVARIATE Procedure
            Variable: age
            RACEW = Yes
        Extreme Observations
----Lowest----
\begin{tabular}{rrrr} 
Value & Obs & Value & Obs \\
22.5 & 369 & 64.3 & 111 \\
23.1 & 367 & 68.6 & 196 \\
24.1 & 164 & 69.6 & 113 \\
24.4 & 326 & 70.4 & 234 \\
25.4 & 56 & 70.7 & 21
\end{tabular}
table 1: analysis of baseline factors

The UNIVARIATE Procedure
Variable: wgtkg
RACEW = No

Moments
\begin{tabular}{lrlr} 
N & 193 & Sum Weights & 193 \\
Mean & 91.0174282 & Sum Observations & 17566.3636 \\
Std Deviation & 19.628771 & Variance & 385.28865 \\
Skewness & 0.83374019 & Kurtosis & 0.84820102 \\
Uncorrected SS & 1672820.66 & Corrected SS & 73975.4207 \\
Coeff Variation & 21.5659477 & Std Error Mean & 1.41290985
\end{tabular}

Basic Statistical Measures
\begin{tabular}{lllr}
\multicolumn{2}{c}{ Location } & \multicolumn{2}{c}{ Variability } \\
Mean & 91.01743 & Std Deviation & 19.62877 \\
Median & 87.27273 & Variance & 385.28865 \\
Mode & 74.54545 & Range & 102.27273 \\
& & Interquartile Range & 22.72727
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Tests for Location: Mu0=0} \\
\hline Test & \multicolumn{4}{|l|}{-Statistic-} \\
\hline Student's t & t & 64.41843 & Pr \(>|t|\) & <. 0001 \\
\hline Sign & M & 96.5 & \(\operatorname{Pr}>=\mid \mathrm{M}\) & <. 0001 \\
\hline Si gned Rank & S & 9360.5 & Pr \(>=\mid \mathrm{S}\) & <. 0001 \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Quantiles & (Definition 5) \\
Quantile & Estimate \\
100\% Max & 157.2727 \\
\(99 \%\) & 156.8182 \\
\(95 \%\) & 133.6364 \\
\(90 \%\) & 114.5455 \\
\(75 \%\) Q3 & 100.9091 \\
50\% Median & 87.2727 \\
\(25 \%\) Q1 & 78.1818 \\
\(10 \%\) & 70.0000 \\
\(5 \%\) & 62.7273 \\
1\% & 55.9091 \\
\(0 \%\) Min & 55.0000
\end{tabular}
```

 table 1: analysis of baseline factors
    ```
                The UNIVARIATE Procedure
                    Variable: wgtkg
                RACEW = No
                Extreme Observations
\begin{tabular}{crcr}
------Lowest----- & -----Highest----- \\
Value & Obs & Value & Obs \\
55.0000 & 49 & 138.182 & 341 \\
55.9091 & 392 & 139.091 & 368 \\
55.9091 & 315 & 148.182 & 82 \\
57.2727 & 33 & 156.818 & 18 \\
59.0909 & 172 & 157.273 & 202
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Missing Values} \\
\hline & & ----Per & Of- \\
\hline \multicolumn{4}{|l|}{Missing Missing} \\
\hline Value & Count & All Obs & Obs \\
\hline & 3 & 1.53 & 100.00 \\
\hline
\end{tabular}
```

 table 1: analysis of baseline factors
    ```
            The UNIVARIATE Procedure
            Variable: wgtkg
                RACEW = Yes

Moments
\begin{tabular}{lrlr} 
N & 205 & Sum Weights & 205 \\
Mean & 84.3104213 & Sum Observations & 17283.6364 \\
Std Deviation & 17.7016357 & Variance & 313.347908 \\
Skewness & 0.48340341 & Kurtosis & 0.22263762 \\
Uncorrected SS & 1521113.64 & Corrected SS & 63922.9732 \\
Coeff Variation & 20.9957861 & Std Error Mean & 1.23633587
\end{tabular}

Basic Statistical Measures
\begin{tabular}{lllr}
\multicolumn{2}{c}{ Location } & \multicolumn{2}{c}{ Variability } \\
Mean & 84.31042 & Std Deviation & 17.70164 \\
Median & 82.27273 & Variance & 313.34791 \\
Mode & 72.72727 & Range & 97.72727 \\
& & Interquartile Range & 23.18182
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Tests for Location: Mu0=0} \\
\hline Test & \multicolumn{4}{|l|}{-Statistic-} \\
\hline Student's t & , & 68.19378 & \(\operatorname{Pr}>|\mathrm{t}|\) & \(<.0001\) \\
\hline Sign & M & 102.5 & Pr > \(=\mid \mathrm{M}\) & \(<.0001\) \\
\hline Signed Rank & S & 10557.5 & \(\operatorname{Pr}>=\mid S\) & <.0001 \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Quantiles & (Definition 5) \\
Quantile & Estimate \\
100\% Max & 148.6364 \\
\(99 \%\) & 126.8182 \\
\(95 \%\) & 115.9091 \\
\(90 \%\) & 106.8182 \\
\(75 \%\) Q3 & 95.9091 \\
\(50 \%\) Median & 82.2727 \\
\(25 \%\) Q1 & 72.7273 \\
\(10 \%\) & 60.4545 \\
\(5 \%\) & 56.3636 \\
\(1 \%\) & 52.2727 \\
\(0 \%\) Min & 50.9091
\end{tabular}
```

 table 1: analysis of baseline factors
    ```
        The UNIVARIATE Procedure
        Variable: wgtkg
                RACEW = Yes
        Extreme Observations

Value Obs
\(50.9091 \quad 70\)
\(52.2727 \quad 348\)
\(52.2727 \quad 23\)
\(53.1818 \quad 190\)
53.6364313
-----Highest-----
Value Obs
\(125.000 \quad 12\)
125.000271 126.818388 127.273154 148.636239
```

 table 1: analysis of baseline factors
    ```
                    The UNIVARIATE Procedure
                    Variable: bmi
                RACEW = No

Moments
\begin{tabular}{lrlr} 
N & 191 & Sum Weights & 191 \\
Mean & 30.6467432 & Sum Observations & 5853.52795 \\
Std Deviation & 6.27370547 & Variance & 39.3593803 \\
Skewness & 0.99454186 & Kurtosis & 1.36646596 \\
Uncorrected SS & 186869.85 & Corrected SS & 7478.28226 \\
Coeff Variation & 20.4710348 & Std Error Mean & 0.4539494
\end{tabular}

Basic Statistical Measures
\begin{tabular}{lllr}
\multicolumn{2}{c}{ Location } & \multicolumn{2}{c}{ Variability } \\
Mean & 30.64674 & Std Deviation & 6.27371 \\
Median & 29.49960 & Variance & 39.35938 \\
Mode & 22.28403 & Range & 36.69399 \\
& & Interquartile Range & 7.85278
\end{tabular}

NOTE: The mode displayed is the smallest of 4 modes with a count of 2 .
\begin{tabular}{|c|c|c|c|c|}
\hline Test & \multicolumn{2}{|l|}{-Statistic-} & \multicolumn{2}{|r|}{p Value------} \\
\hline Student's t & t & 67.51136 & \(\operatorname{Pr}>|t|\) & <. 0001 \\
\hline Sign & M & 95.5 & \(\operatorname{Pr}>=\mid \mathrm{M}\) & \(<.0001\) \\
\hline Signed Rank & S & 9168 & \(\operatorname{Pr}>=\mid \mathrm{S}\) & <.0001 \\
\hline
\end{tabular}

Quantiles (Definition 5)
\begin{tabular}{lr} 
Quantile & Estimate \\
100\% Max & 56.0709 \\
\(99 \%\) & 49.7853 \\
\(95 \%\) & 41.2045 \\
\(90 \%\) & 38.8627 \\
\(75 \%\) Q3 & 34.1851 \\
\(50 \%\) Median & 29.4996 \\
\(25 \%\) Q1 & 26.3323 \\
\(10 \%\) & 23.6648 \\
\(5 \%\) & 22.2322 \\
\(1 \%\) & 19.9680 \\
\(0 \%\) Min & 19.3769
\end{tabular}
```

 table 1: analysis of baseline factors
    ```
            The UNIVARIATE Procedure
            Variable: bmi
                RACEW = No
                Extreme Observations
\begin{tabular}{crcr}
------Lowest----- & -----Highest----- \\
Value & Obs & Value & Obs \\
& & & \\
19.3769 & 81 & 47.5516 & 18 \\
19.9680 & 377 & 48.3796 & 202 \\
21.0914 & 206 & 48.5581 & 105 \\
21.3410 & 172 & 49.7853 & 341 \\
21.6010 & 322 & 56.0709 & 368
\end{tabular}

```

 table 1: analysis of baseline factors
    ```
            The UNIVARIATE Procedure
            Variable: bmi
            RACEW = Yes

Moments
\begin{tabular}{lrlr} 
N & 203 & Sum Weights & 203 \\
Mean & 28.4650559 & Sum Observations & 5778.40635 \\
Std Deviation & 5.64308585 & Variance & 31.8444179 \\
Skewness & 1.13609849 & Kurtosis & 2.24236009 \\
Uncorrected SS & 170915.232 & Corrected SS & 6432.57241 \\
Coeff Variation & 19.8246083 & Std Error Mean & 0.39606698
\end{tabular}

Basic Statistical Measures
\begin{tabular}{lllr}
\multicolumn{2}{c}{ Location } & \multicolumn{2}{c}{ Variability } \\
Mean & 28.46506 & Std Deviation & 5.64309 \\
Median & 27.59877 & Variance & 31.84442 \\
Mode & 29.08367 & Range & 34.27125 \\
& & Interquartile Range & 7.12627
\end{tabular}

Quantiles (Definition 5)
    Quantile Estimate
    100\% Max 53.2041
    99\% 45.8581
    95\% 37.8656
    90\% 35.4053
    75\% Q3 31.5395
    50\% Median 27.5988
    25\% Q1 24.4132
    10\% 21.8951
    5\% 21.0316
    \(1 \% \quad 19.4572\)
    0\% Min 18.9328
```

 table 1: analysis of baseline factors
    ```
            The UNIVARIATE Procedure
            Variable: bmi
                        RACEW = Yes
                Extreme Observations
\begin{tabular}{crcr}
------Lowest----- & -----Highest----- \\
Value & Obs & Value & Obs \\
& & & \\
18.9328 & 190 & 44.6683 & 42 \\
19.0708 & 103 & 45.7229 & 239 \\
19.4572 & 168 & 45.8581 & 12 \\
19.9037 & 237 & 47.8252 & 129 \\
20.1880 & 70 & 53.2041 & 329
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Missing Values} \\
\hline & & -----Per & Of- \\
\hline \multicolumn{4}{|l|}{Missing Missing} \\
\hline Value & Count & All Obs & Obs \\
\hline & 2 & 0.98 & 100.00 \\
\hline
\end{tabular}
```

 table 1: analysis of baseline factors
    ```

The UNIVARIATE Procedure Variable: ALT (ALT result lab)

RACEW = No

Moments
\begin{tabular}{lrlr} 
N & 194 & Sum Weights & 194 \\
Mean & 71.0309278 & Sum Observations & 13780 \\
Std Deviation & 45.5106783 & Variance & 2071.22184 \\
Skewness & 2.37506199 & Kurtosis & 9.59007239 \\
Uncorrected SS & 1378552 & Corrected SS & 399745.814 \\
Coeff Variation & 64.071637 & Std Error Mean & 3.26747628
\end{tabular}

Basic Statistical Measures
\begin{tabular}{lllr}
\multicolumn{2}{c}{ Location } & \multicolumn{2}{c}{ Variability } \\
Mean & 71.03093 & Std Deviation & 45.51068 \\
Median & 59.00000 & Variance & 2071 \\
Mode & 40.00000 & Range & 347.00000 \\
& & Interquartile Range & 50.00000
\end{tabular}

\begin{tabular}{lr} 
Quantiles & (Definition 5 ) \\
Quantile & Estimate \\
100\% Max & 363 \\
\(99 \%\) & 238 \\
\(95 \%\) & 146 \\
\(90 \%\) & 126 \\
\(75 \%\) Q3 & 90 \\
\(50 \%\) Median & 59 \\
\(25 \%\) Q1 & 40 \\
\(10 \%\) & 31 \\
\(5 \%\) & 24 \\
\(1 \%\) & 16 \\
\(0 \%\) Min & 16
\end{tabular}
```

 table 1: analysis of baseline factors
    ```
            The UNIVARIATE Procedure
        Variable: ALT (ALT result lab)
                        RACEW = No
                Extreme Observations
            ----Lowest----
                                    ----Highest---
Value Obs Value Obs
\(16 \quad 201 \quad 198 \quad 156\)
\(16 \quad 39 \quad 210 \quad 345\)
\(18 \quad 215 \quad 230 \quad 80\)
\(19283 \quad 238 \quad 366\)
\begin{tabular}{llll}
20 & 79 & 363 & 101
\end{tabular}
\begin{tabular}{rcrr} 
& Missing Values & \\
Missing & & -----Percent & Of------ \\
Value & Count & All Obs & Missing \\
& & & Obs \\
B & 1 & 0.51 & 50.00 \\
Total & 1 & 0.51 & 50.00 \\
& 2 & 1.02 & 100.00
\end{tabular}
```

 table 1: analysis of baseline factors
    ```

The UNIVARIATE Procedure Variable: ALT (ALT result lab)

RACEW = Yes

Moments
\begin{tabular}{lrlr} 
N & 205 & Sum Weights & 205 \\
Mean & 107.517073 & Sum Observations & 22041 \\
Std Deviation & 90.6526226 & Variance & 8217.89799 \\
Skewness & 2.08974237 & Kurtosis & 5.02759921 \\
Uncorrected SS & 4046235 & Corrected SS & 1676451.19 \\
Coeff Variation & 84.3146302 & Std Error Mean & 6.3314538
\end{tabular}

Basic Statistical Measures
\begin{tabular}{lrlr}
\multicolumn{2}{c}{ Location } & \multicolumn{2}{c}{ Variability } \\
Mean & 107.5171 & Std Deviation & 90.65262 \\
Median & 74.0000 & Variance & 8218 \\
Mode & 54.0000 & Range & 494.00000 \\
& & Interquartile Range & 87.00000
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Tests for Location: Mu0=0} \\
\hline Test & \multicolumn{4}{|l|}{-Statistic-} \\
\hline Student's t & , & 16.98142 & \(\operatorname{Pr}>|\mathrm{t}|\) & \(<.0001\) \\
\hline Sign & M & 102.5 & \(\operatorname{Pr}>=\mid \mathrm{M}\) & \(<.0001\) \\
\hline Signed Rank & S & 10557.5 & \(\operatorname{Pr}>=\mid S\) & <.0001 \\
\hline
\end{tabular}

Quantiles (Definition 5)

Quantile Estimate
100\% Max 508
99\% 478

95\% 281
90\% 221
75\% Q3 138
50\% Median 74
25\% Q1 51
\(10 \% 36\)
5\% 28
1\% 21
0\% Min 14
```

table 1: analysis of baseline factors

```
            The UNIVARIATE Procedure
    Variable: ALT (ALT result lab)
        RACEW = Yes
        Extreme Observations
            ----Lowest----
                            ----Highest---
\begin{tabular}{rrrr} 
Value & Obs & Value & Obs \\
& & & \\
14 & 263 & 409 & 238 \\
20 & 129 & 428 & 299 \\
21 & 70 & 478 & 302 \\
23 & 281 & 505 & 35 \\
23 & 164 & 508 & 378
\end{tabular}
```

 table 1: analysis of baseline factors
    ```

The UNIVARIATE Procedure Variable: AST (AST result lab)

RACEW = No

Moments


NOTE: The mode displayed is the smallest of 3 modes with a count of 6 .
\begin{tabular}{|c|c|c|c|c|}
\hline Test & \multicolumn{2}{|l|}{-Statistic-} & \multicolumn{2}{|r|}{Value------} \\
\hline Student's t & t & 20.0166 & Pr \(>|t|\) & \(<.0001\) \\
\hline Sign & M & 97 & \(\operatorname{Pr}>=\mid \mathrm{M}\) & <. 0001 \\
\hline Signed Rank & S & 9457.5 & \(\operatorname{Pr}>=\mid S\) & <.0001 \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Qu antiles & (Definition 5 ) \\
Quantile & Estimate \\
100\% Max & 363 \\
\(99 \%\) & 234 \\
\(95 \%\) & 126 \\
\(90 \%\) & 95 \\
\(75 \%\) Q3 & 69 \\
\(50 \%\) Median & 51 \\
\(25 \%\) Q1 & 33 \\
10\% & 25 \\
\(5 \%\) & 24 \\
\(1 \%\) & 19 \\
\(0 \%\) Min & 18
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
The UNIVARIATE Procedure \\
Variable: AST (AST result lab) \\
RACEW = No
\end{tabular}} \\
\hline \multicolumn{4}{|c|}{Extreme Observations} \\
\hline \multicolumn{4}{|l|}{----Lowest---- ----Highes} \\
\hline Value & Obs & Value & Obs \\
\hline 18 & 39 & 195 & 197 \\
\hline 19 & 283 & 203 & 80 \\
\hline 20 & 195 & 208 & 360 \\
\hline 21 & 277 & 234 & 345 \\
\hline 23 & 398 & 363 & 101 \\
\hline \multicolumn{4}{|c|}{Missing Values} \\
\hline \multicolumn{4}{|r|}{-----Percent Of-----} \\
\hline \multicolumn{4}{|l|}{Missing Missing} \\
\hline Value & Count & All Obs & Obs \\
\hline - & 1 & 0.51 & 50.00 \\
\hline B & 1 & 0.51 & 50.00 \\
\hline Total & 2 & 1.02 & 100.00 \\
\hline
\end{tabular}
```

 table 1: analysis of baseline factors
    ```

The UNIVARIATE Procedure Variable: AST (AST result lab)

RACEW = Yes

Moments
\begin{tabular}{lrlr} 
N & 205 & Sum Weights & 205 \\
Mean & 72.9609756 & Sum Observations & 14957 \\
Std Deviation & 59.382595 & Variance & 3526.29259 \\
Skewness & 2.66525749 & Kurtosis & 9.97105001 \\
Uncorrected SS & 1810641 & Corrected SS & 719363.688 \\
Coeff Variation & 81.3895298 & Std Error Mean & 4.14746034
\end{tabular}

Basic Statistical Measures
\begin{tabular}{lllr}
\multicolumn{2}{c}{ Location } & \multicolumn{2}{c}{ Variability } \\
Mean & 72.96098 & Std Deviation & 59.38259 \\
Median & 52.00000 & Variance & 3526 \\
Mode & 36.00000 & Range & 439.00000 \\
& & Interquartile Range & 50.00000
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Tests for Location: Mu0=0} \\
\hline Test & \multicolumn{4}{|l|}{-Statistic-} \\
\hline Student's t & L & 17.59172 & \(\operatorname{Pr}>|t|\) & \(<.0001\) \\
\hline Sign & M & 102.5 & \(\operatorname{Pr}>=\mid \mathrm{M}\) & \(<.0001\) \\
\hline Signed Rank & S & 10557.5 & \(\operatorname{Pr}>=\mid S\) & <.0001 \\
\hline
\end{tabular}

Quantiles (Definition 5)

Quantile Estimate
100\% Max 455
99\% 275

95\% 207
90\% 142
75\% Q3 87

50\% Median 52
25\% Q1 37
\(10 \% \quad 27\)

5\% 24
1\% 18
0\% Min 16
```

table 1: analysis of baseline factors

```
    The UNIVARIATE Procedure
    Variable: AST (AST result lab)
        RACEW = Yes
        Extreme Observations
\begin{tabular}{cccr}
----Lowest---- & \multicolumn{2}{l}{--- Highest--- } \\
Value & Obs & Value & Obs \\
& & & \\
16 & 70 & 263 & 378 \\
17 & 251 & 269 & 238 \\
18 & 263 & 275 & 68 \\
18 & 129 & 283 & 192 \\
20 & 177 & 455 & 326
\end{tabular}
```

 table 1: analysis of baseline factors
    ```
            The UNIVARIATE Procedure
        Variable: ALB (Albumin result lab)
                RACEW = No

Moments
\begin{tabular}{lrlr} 
N & 139 & Sum Weights & 139 \\
Mean & 3.99208633 & Sum Observations & 554.9 \\
Std Deviation & 0.38861791 & Variance & 0.15102388 \\
Skewness & -0.5865309 & Kurtosis & 2.12718791 \\
Uncorrected SS & 2236.05 & Corrected SS & 20.841295 \\
Coeff Variation & 9.73470695 & Std Error Mean & 0.03296214
\end{tabular}

Basic Statistical Measures
\begin{tabular}{llll}
\multicolumn{2}{c}{ Location } & \multicolumn{2}{c}{ Variability } \\
Mean & 3.992086 & Std Deviation & 0.38862 \\
Median & 4.000000 & Variance & 0.15102 \\
Mode & 4.000000 & Range & 2.70000 \\
& & Interquartile Range & 0.50000
\end{tabular}

\begin{tabular}{lr} 
Quantiles & (Definition 5) \\
Quantile & Estimate \\
100\% Max & 5.0 \\
\(99 \%\) & 4.8 \\
\(95 \%\) & 4.6 \\
\(90 \%\) & 4.4 \\
\(75 \%\) Q3 & 4.2 \\
\(50 \%\) Median & 4.0 \\
\(25 \%\) Q1 & 3.7 \\
10\% & 3.5 \\
\(5 \%\) & 3.4 \\
\(1 \%\) & 2.9 \\
\(0 \%\) Min & 2.3
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
The UNIVARIATE Procedure \\
Variable: ALB (Albumin result lab)
RACEW \(=\) No
\end{tabular}} \\
\hline \multicolumn{4}{|c|}{Extreme Observations} \\
\hline \multicolumn{4}{|l|}{----Lowest---- ----Highest---} \\
\hline Value & Obs & Value & Obs \\
\hline 2.3 & 83 & 4.7 & 77 \\
\hline 2.9 & 340 & 4.7 & 81 \\
\hline 3.1 & 396 & 4.7 & 180 \\
\hline 3.1 & 314 & 4.8 & 291 \\
\hline 3.4 & 394 & 5.0 & 182 \\
\hline \multicolumn{4}{|c|}{Missing Values} \\
\hline \multicolumn{4}{|r|}{-----Percent Of-----} \\
\hline Missing & & & Missing \\
\hline Value & Count & All Obs & Obs \\
\hline - & 1 & 0.51 & 1.75 \\
\hline B & 56 & 28.57 & 98.25 \\
\hline Total & 57 & 29.08 & 100.00 \\
\hline
\end{tabular}
```

 table 1: analysis of baseline factors
    ```
            The UNIVARIATE Procedure
        Variable: ALB (Albumin result lab)
                        RACEW = Yes

Moments
\begin{tabular}{|c|c|c|c|}
\hline N & 143 & Sum Weights & 143 \\
\hline Mean & 4.17342657 & Sum Observations & 596.8 \\
\hline Std Deviation & 0.32565234 & Variance & 0.10604944 \\
\hline Skewness & -0.18588 & Kurtosis & -0.1270047 \\
\hline Uncorrected SS & 2505.76 & Corrected SS & 15.059021 \\
\hline Coeff Variation & - 7.80299664 & Std Error Mean & 0.02723242 \\
\hline \multicolumn{4}{|c|}{Basic Statistical Measures} \\
\hline \multicolumn{2}{|l|}{Location} & Variability & \\
\hline Mean 4 & 4.173427 Std & eviation & 0.32565 \\
\hline Median 4 & 4.200000 Var & nce & 0.10605 \\
\hline Mode 4 & 4.100000 Ran & & 1.70000 \\
\hline & Int & quartile Range & 0.40000 \\
\hline
\end{tabular}

NOTE: The mode displayed is the smallest of 2 modes with a count of 19.
\begin{tabular}{|c|c|c|c|c|}
\hline Test & \multicolumn{2}{|l|}{-Statistic-} & \multicolumn{2}{|l|}{-----p Value------} \\
\hline Student's t & t & 153.2522 & \(\operatorname{Pr}>|t|\) & <. 0001 \\
\hline Sign & M & 71.5 & \(\operatorname{Pr}>=\mid \mathrm{M}\) & <. 0001 \\
\hline Signed Rank & S & 5148 & \(\operatorname{Pr}>=\mid S\) & <. 0001 \\
\hline
\end{tabular}
\begin{tabular}{lc} 
Quantiles & (Definition 5) \\
Quantile & Estimate \\
100\% Max & \\
\(99 \%\) & 4.0 \\
\(95 \%\) & 4.6 \\
\(90 \%\) & 4.6 \\
\(75 \%\) Q3 & 4.4 \\
\(50 \%\) Median & 4.2 \\
\(25 \%\) Q1 & 4.0 \\
\(10 \%\) & 3.8 \\
\(5 \%\) & 3.7 \\
\(1 \%\) & 3.3 \\
\(0 \%\) Min & 3.3
\end{tabular}

table 1: analysis of baseline factors
```

 The UNIVARIATE Procedure
 Variable: TBILI (Total bilirubin lab result)
 RACEW = No
    ```
                    Moments
\begin{tabular}{lrlr} 
N & 194 & Sum Weights & 194 \\
Mean & 0.6314433 & Sum Observations & 122.5 \\
Std Deviation & 0.31042505 & Variance & 0.09636371 \\
Skewness & 1.72084376 & Kurtosis & 5.67232557 \\
Uncorrected SS & 95.95 & Corrected SS & 18.5981959 \\
Coeff Variation & 49.161191 & Std Error Mean & 0.02228722
\end{tabular}




```

 table 1: analysis of baseline factors
    ```

The UNIVARIATE Procedure Variable: HGB (Hemoglobin lab)

RACEW = No

Moments


NOTE: The mode displayed is the smallest of 2 modes with a count of 11.
\begin{tabular}{|c|c|c|c|c|}
\hline Test & \multicolumn{2}{|l|}{-Statistic-} & \multicolumn{2}{|r|}{Value------} \\
\hline Student's t & t & 150.7512 & Pr \(>|t|\) & <. 0001 \\
\hline Sign & M & 96.5 & \(\operatorname{Pr}>=|\mathrm{M}|\) & <. 0001 \\
\hline Signed Rank & S & 9360.5 & \(\operatorname{Pr}>=|S|\) & <.0001 \\
\hline
\end{tabular}

Quantiles (Definition 5)
\begin{tabular}{lr} 
Quantile & Estimate \\
\(100 \%\) Max & 18.0 \\
\(99 \%\) & 17.8 \\
\(95 \%\) & 16.5 \\
\(90 \%\) & 16.0 \\
\(75 \%\) Q3 & 15.1 \\
\(50 \%\) Median & 14.3 \\
\(25 \%\) Q1 & 13.5 \\
\(10 \%\) & 12.7 \\
\(5 \%\) & 11.9 \\
\(1 \%\) & 10.8 \\
\(0 \%\) Min & 10.7
\end{tabular}
```

 table 1: analysis of baseline factors
    ```
            The UNIVARIATE Procedure
        Variable: HGB (Hemoglobin lab)
                        RACEW = No
                Extreme Observations

\begin{tabular}{rrrr} 
Value & Obs & Value & Obs \\
10.7 & 83 & 17.1 & 393 \\
10.8 & 340 & 17.2 & 2 \\
11.3 & 195 & 17.6 & 246 \\
11.4 & 205 & 17.8 & 145 \\
11.6 & 197 & 18.0 & 182
\end{tabular}

Missing Values
Missing
Value \(\quad\) Count \(\quad\) All Obs \(\quad\)\begin{tabular}{r} 
Missing \\
Obs
\end{tabular}
```

 table 1: analysis of baseline factors
    ```

The UNIVARIATE Procedure Variable: HGB (Hemoglobin lab)

RACEW = Yes

Moments
\begin{tabular}{lrlr} 
N & 202 & Sum Weights & 202 \\
Mean & 14.9386139 & Sum Observations & 3017.6 \\
Std Deviation & 1.29967239 & Variance & 1.68914832 \\
Skewness & -0.0400601 & Kurtosis & -0.4356941 \\
Uncorrected SS & 45418.28 & Corrected SS & 339.518812 \\
Coeff Variation & 8.70008691 & Std Error Mean & 0.09144463
\end{tabular}

Basic Statistical Measures

Quantiles (Definition 5)
    Quantile Estimate
        100\% Max 17.70
        99\% 17.60
        95\% 17.20
        90\% 16.60
        75\% Q3 \(\quad 15.90\)
        50\% Median 15.05
        25\% Q1 13.90
        \(10 \% \quad 13.30\)
        5\% 12.80
        \(1 \% \quad 11.90\)
        0\% Min 11.80
```

 table 1: analysis of baseline factors
    ```
            The UNIVARIATE Procedure
        Variable: HGB (Hemoglobin lab)
                            RACEW = Yes
                Extreme Observations

\begin{tabular}{cccc} 
Value & Obs & Value & Obs \\
11.8 & 303 & 17.5 & 311 \\
11.9 & 198 & 17.5 & 387 \\
11.9 & 168 & 17.6 & 335 \\
12.1 & 113 & 17.7 & 124 \\
12.4 & 329 & 17.7 & 236
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Missing Values} \\
\hline & & -----Per & Of- \\
\hline Missing & & & Missing \\
\hline Value & Count & All Obs & Obs \\
\hline B & 2 & 0.98 & 66.67 \\
\hline F & 1 & 0.49 & 33.33 \\
\hline Total & 3 & 1.46 & 100.00 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{The UNIVARIATE Procedure} \\
\hline \multirow[t]{2}{*}{Variable} & WBC ( & \[
\begin{aligned}
& \text { e blood c } \\
& =\text { No }
\end{aligned}
\] & s lab) \\
\hline & Extreme & ervations & \\
\hline \multicolumn{4}{|c|}{Lowest---- ----Highest-} \\
\hline Value & Obs & Value & Obs \\
\hline 2.7 & 314 & 11.0 & 141 \\
\hline 2.7 & 293 & 11.3 & 80 \\
\hline 2.7 & 206 & 11.3 & 183 \\
\hline 2.8 & 349 & 12.1 & 362 \\
\hline 2.9 & 280 & 12.7 & 96 \\
\hline \multicolumn{4}{|c|}{Missing Values} \\
\hline & & -----Perc & Of----- \\
\hline Missing & & & Missing \\
\hline Value & Count & All Obs & Obs \\
\hline . & 1 & 0.51 & 33.33 \\
\hline B & 2 & 1.02 & 66.67 \\
\hline Total & 3 & 1.53 & 100.00 \\
\hline
\end{tabular}
```

 table 1: analysis of baseline factors
    ```

The UNIVARIATE Procedure Variable: WBC (White blood cells lab) RACEW = Yes

Moments
\begin{tabular}{lrlr} 
N & 202 & Sum Weights & 202 \\
Mean & 6.41237624 & Sum Observations & 1295.3 \\
Std Deviation & 2.00784414 & Variance & 4.03143811 \\
Skewness & 1.22975499 & Kurtosis & 2.42528399 \\
Uncorrected SS & 9116.27 & Corrected SS & 810.319059 \\
Coeff Variation & 31.312014 & Std Error Mean & 0.14127142
\end{tabular}

Basic Statistical Measures
\begin{tabular}{lllr}
\multicolumn{2}{c}{ Location } & \multicolumn{2}{c}{ Variability } \\
Mean & 6.412376 & Std Deviation & 2.00784 \\
Median & 6.200000 & Variance & 4.03144 \\
Mode & 4.900000 & Range & 12.50000 \\
& & Interquartile Range & 2.50000
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Test & \multicolumn{2}{|l|}{-Statistic-} & \multicolumn{2}{|r|}{p Value------} \\
\hline Student's t & t & 45.39047 & \(\operatorname{Pr}>|t|\) & \(<.0001\) \\
\hline Sign & M & 101 & \(\operatorname{Pr}>=|\mathrm{M}|\) & <.0001 \\
\hline Signed Rank & S & 10251.5 & \(\operatorname{Pr}>=\mid S\) & <.0001 \\
\hline
\end{tabular}

Quantiles (Definition 5)

Quantile Estimate
100\% Max 14.5
99\% \(\quad 13.6\)
95\% 10.2
90\% 8.7
75\% Q3 7.4
50\% Median 6.2
25\% Q1 4.9
\(10 \% \quad 4.4\)
5\% 3.9
1\% 3.3
\(0 \%\) Min 2.0

\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Missing Values} \\
\hline & & -----Per & Of----- \\
\hline Missing & & & Missing \\
\hline Value & Count & All Obs & Obs \\
\hline B & 2 & 0.98 & 66.67 \\
\hline F & 1 & 0.49 & 33.33 \\
\hline Total & 3 & 1.46 & 100.00 \\
\hline
\end{tabular}
table 1: analysis of baseline factors

The UNIVARIATE Procedure Variable: log10vload RACEW = No

Moments
\begin{tabular}{lrlr} 
N & 194 & Sum Weights & 194 \\
Mean & 6.23473169 & Sum Observations & 1209.53795 \\
Std Deviation & 0.66978945 & Variance & 0.44861791 \\
Skewness & -0.7136958 & Kurtosis & 0.84701483 \\
Uncorrected SS & 7627.72783 & Corrected SS & 86.5832567 \\
Coeff Variation & 10.7428753 & Std Error Mean & 0.04808808
\end{tabular}

Basic Statistical Measures
\begin{tabular}{llll}
\multicolumn{2}{c}{ Location } & \multicolumn{2}{c}{ Variability } \\
Mean & 6.234732 & Std Deviation & 0.66979 \\
Median & 6.393574 & Variance & 0.44862 \\
Mode & 6.563481 & Range & 4.23946 \\
& & Interquartile Range & 1.07918
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Tests for Location: Mu0=0} \\
\hline Test & \multicolumn{5}{|l|}{-Statistic-} \\
\hline Student's t & , & 129.6523 & Pr \(>\) & & \(<.0001\) \\
\hline Sign & M & 97 & \(\operatorname{Pr}>=\) & & <. 0001 \\
\hline Signed Rank & S & 9457.5 & \(\operatorname{Pr}>=\) & S & <.0001 \\
\hline
\end{tabular}

Quantiles (Definition 5)
Quantile Estimate
100\% Max 7.48001
99\% \(\quad 7.38917\)
95\% 7.15229
90\% 7.01284
75\% Q3 6.72754
50\% Median 6.39357
25\% Q1 5.64836
\(10 \% \quad 5.32428\)
5\% 5.11394
1\% 4.76790
0\% Min 3.24055
```

 table 1: analysis of baseline factors
    ```
            The UNIVARIATE Procedure
                        Variable: log10vload
                RACEW = No
                        Extreme Observations
\begin{tabular}{crcc}
------Lowest----- & \multicolumn{2}{c}{\(-----H i g h e s t-----\)} \\
Value & Obs & Value & Obs \\
3.24055 & 229 & 7.26717 & 332 \\
4.76790 & 172 & 7.29003 & 257 \\
4.85552 & 86 & 7.34830 & 272 \\
4.88480 & 52 & 7.38917 & 397 \\
4.98722 & 375 & 7.48001 & 144
\end{tabular}
\begin{tabular}{rcrr} 
& Missing Values \\
\begin{tabular}{r} 
Missing \\
Value
\end{tabular} & & -----Percent & \\
Count & All Obs & \begin{tabular}{r} 
Of---- \\
Missing \\
Obs
\end{tabular} \\
. & 2 & 1.02 & 100.00
\end{tabular}
```

 table 1: analysis of baseline factors
    ```
                    The UNIVARIATE Procedure
                        Variable: log10vload
                RACEW = Yes

Moments
\begin{tabular}{|c|c|c|c|}
\hline N & 205 & Sum Weights & 205 \\
\hline Mean & 6.29757466 & Sum Observations & 1291.00281 \\
\hline Std Deviation & 0.75959726 & Variance & 0.576988 \\
\hline Skewness & -1.1676952 & Kurtosis & 1.63028543 \\
\hline Uncorrected SS & 8247.89211 & Corrected SS & 117.705552 \\
\hline Coeff Variation & - 12.0617428 & Std Error Mean & 0.05305257 \\
\hline \multicolumn{4}{|c|}{Basic Statistical Measures} \\
\hline \multicolumn{2}{|l|}{Location} & Variability & \\
\hline Mean 6 & 6.297575 Std & viation & 0.75960 \\
\hline Median 6 & 6.542825 Var & ce & 0.57699 \\
\hline Mode 5 & 5.432969 Ran & & 4.53630 \\
\hline & Int & quartile Range & 1.14972 \\
\hline
\end{tabular}

NOTE: The mode displayed is the smallest of 12 modes with a count of 2 .
\begin{tabular}{|c|c|c|c|c|c|}
\hline Test & \multicolumn{5}{|l|}{-Statistic- -----p Va} \\
\hline Student's t & t & 118.7044 & \(\mathrm{Pr}>\) & & <. 0001 \\
\hline Sign & M & 102.5 & \(\operatorname{Pr}>=\) & & <. 0001 \\
\hline Signed Rank & S & 10557.5 & \(\operatorname{Pr}>=\) & S & <.0001 \\
\hline
\end{tabular}

Quantiles (Definition 5)
\begin{tabular}{lr} 
Quantile & Estimate \\
100\% Max & 7.67302 \\
\(99 \%\) & 7.46240 \\
\(95 \%\) & 7.19312 \\
\(90 \%\) & 7.07188 \\
\(75 \%\) Q3 & 6.80003 \\
\(50 \%\) Median & 6.54283 \\
\(25 \%\) Q1 & 5.65031 \\
\(10 \%\) & 5.32222 \\
\(5 \%\) & 4.99167 \\
\(1 \%\) & 3.95617 \\
\(0 \%\) Min & 3.13672
\end{tabular}
```

 table 1: analysis of baseline factors
 The UNIVARIATE Procedure
 Variable: log10vload
 RACEW = Yes
 Extreme Observations
    ```
------Lowest-----
\begin{tabular}{rrrr} 
Value & Obs & Value & Obs \\
& & & \\
3.13672 & 163 & 7.32015 & 369 \\
3.58771 & 308 & 7.35984 & 278 \\
3.95617 & 186 & 7.46240 & 167 \\
4.10380 & 129 & 7.56703 & 347 \\
4.35793 & 164 & 7.67302 & 21
\end{tabular}

```

 table 1: analysis of baseline factors
    ```

The NPAR1WAY Procedure
Wilcoxon Scores (Rank Sums) for Variable wgtkg Classified by Variable RACEW


\section*{Kruskal-Wallis Test}
\begin{tabular}{lc} 
Chi -Square & 10.3880 \\
DF & 1 \\
\(\mathrm{Pr}>\) Chi-Square & 0.0013
\end{tabular}


The NPAR1WAY Procedure
Wilcoxon Scores (Rank Sums) for Variable ALT
Classified by Variable RACEW
\begin{tabular}{|c|c|c|c|c|c|}
\hline RACEW & N & Sum of Scores & \begin{tabular}{l}
Expected \\
Under H0
\end{tabular} & \begin{tabular}{l}
Std Dev \\
Under H0
\end{tabular} & Mean Score \\
\hline Yes & 205 & 45846.50 & 41000.0 & 1151.28180 & 223.641463 \\
\hline No & 194 & 33953.50 & 38800.0 & 1151.28180 & 175.018041 \\
\hline
\end{tabular}

Average scores were used for ties.

Wilcoxon Two-Sample Test
Statistic 33953.5000

Normal Approximation
Z -4.2092
One-Sided Pr < Z <.0001
Two-Sided Pr > |z| <. 0001
t Approximation
One-Sided Pr < Z <.0001

Two -Sided Pr > \(|\mathrm{Z}|<.0001\)
\(Z\) includes a continuity correction of 0.5 .

\section*{Kruskal-Wallis Test}
\begin{tabular}{lc} 
Chi -Square & 17.7212 \\
DF & 1 \\
\(\mathrm{Pr}>\) Chi-Square & \(<.0001\)
\end{tabular}


```

 table 1: analysis of baseline factors
    ```
                    The NPAR1WAY Procedure
    Wilcoxon Scores (Rank Sums) for Variable TBILI
                Classified by Variable RACEW
\begin{tabular}{|c|c|c|c|c|c|}
\hline RACEW & N & Sum of Scores & \begin{tabular}{l}
Expected \\
Under HO
\end{tabular} & Std Dev Under H0 & Mean Score \\
\hline Yes & 204 & 44525.50 & 40698.0 & 1139.24138 & 218.262255 \\
\hline No & 194 & 34875.50 & 38703.0 & 1139.24138 & 179.770619 \\
\hline
\end{tabular}

Average scores were used for ties.

Wilcoxon Two-Sample Test
Statistic 34875.5000
Nor mal Approximation
Z -3.3593
One-Sided Pr < Z 0.0004
Two-Sided Pr > |z| 0.0008
t Approximation
One-Sided Pr < Z 0.0004
Two -Sided Pr \(>|z| \quad 0.0009\)
\(Z\) includes a continuity correction of 0.5 .

Kruskal-Wallis Test
\begin{tabular}{lc} 
Chi -Square & 11.2875 \\
DF & 1 \\
\(\mathrm{Pr}>\) Chi-Square & 0.0008
\end{tabular}


table 1: analysis of baseline factors

The NPAR1WAY Procedure
Wilcoxon Scores (Rank Sums) for Variable log10vload Classified by Variable RACEW
\begin{tabular}{|c|c|c|c|c|}
\hline RACEW & N & \begin{tabular}{ll} 
Sum of & Expected \\
Scores & Under HO
\end{tabular} & \begin{tabular}{l}
Std Dev \\
Under H0
\end{tabular} & Mean Score \\
\hline Yes & 205 & 42924.041000 .0 & 1151.37262 & 209.385366 \\
\hline No & 194 & 36876.038800 .0 & 1151.37262 & 190.082474 \\
\hline \multicolumn{5}{|c|}{Average scores were used for ties.} \\
\hline \multicolumn{5}{|c|}{Wilcoxon Two-Sample Test} \\
\hline & & Statistic 368 & 76.0000 & \\
\hline \multicolumn{5}{|c|}{Normal Approximation} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & Z & -1.6706 & \\
\hline & & One -Sided \(\operatorname{Pr}<\mathrm{Z}\) & 0.0474 & \\
\hline & & Two -Sided Pr > | \(\mathrm{Z} \mid\) & 0.0948 & \\
\hline \multicolumn{5}{|c|}{t Approximation} \\
\hline & & One-Sided \(\mathrm{Pr}<\mathrm{Z}\) & 0.0478 & \\
\hline & & Two -Sided \(\operatorname{Pr}>|\mathrm{Z}|\) & 0.0956 & \\
\hline
\end{tabular}

Kruskal-Wallis Test
\begin{tabular}{lc} 
Chi -Square & 2.7924 \\
DF & 1 \\
\(\mathrm{Pr}>\) Chi-Square & 0.0947
\end{tabular}

\section*{Attachment 5}

SAS 9.1 Output for programming code submitted for the replication of selected results in Table 3
"Relationship Between SVR and Each Variable of Interest in Univariable and Multivariable Analysis"

Conjeevaram et.al. 2006
```

replication of selected results in table 3: SVR<=>variables of interest
The GENMOD Procedure
Model Information
Data Set WORK.ALL24_FU2
Distribution Binomial
Link Function Log
Dependent Variable svr
Number of Observations Read 401
Number of Observations Used 401
Number of Events 160
Number of Trials 401

| Response Profile | | |
| :--- | :--- | ---: |
| Ordered
 Value | svr | Frequency |

```
?ROC GENMOD is modeling the probability that svr='1'.

Par ameter Information

Parameter Effect
Prm1 Intercept
Prm2 RACEW
\begin{tabular}{lcrr}
\multicolumn{3}{c}{ Criteria For Assessing } & Goodness Of Fit
\end{tabular}

Algorithm converged.
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{The GENMOD Procedure} \\
\hline \multicolumn{8}{|c|}{Analysis Of Parameter Estimates} \\
\hline Parameter & DF & Estimate & Standard Error & Wald 95 L & fidence & ChiSquare & Pr > Chisq \\
\hline Intercept & 1 & -1.3078 & 0.1173 & -1.5378 & -1.0779 & 124.25 & \(<.0001\) \\
\hline RACEW & 1 & 0.6576 & 0.1350 & 0.3930 & 0.9223 & 23.72 & <. 0001 \\
\hline Scale & 0 & 1.0000 & 0.0000 & 1.0000 & 1.0000 & & \\
\hline
\end{tabular}

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis
\begin{tabular}{lrrr} 
& \multicolumn{4}{c}{\begin{tabular}{c} 
Chi - \\
Source
\end{tabular}} & DF & Square & Pr \(>\) ChiSq \\
RACEW & 1 & 26.84 & \(<.0001\)
\end{tabular}

Contrast Estimate Results
\begin{tabular}{lrrrrrr} 
Label & Estimate & \begin{tabular}{c} 
Standard \\
Error
\end{tabular} & Alpha & Confidence Limits & Square & \\
3eta racew & & 0.6576 & 0.1350 & 0.05 & 0.3930 & 0.9223
\end{tabular}
```

replication of selected results in table 3: SVR<=>variables of interest

```

The GENMOD Procedure

Model Information
\begin{tabular}{lr} 
Data Set & WORK.ALL24_FU2 \\
Distribution & Binomial \\
Link Function & Log \\
Dependent Variable & svr
\end{tabular}
\begin{tabular}{ll} 
Number of Observations Read & 401 \\
Number of Observations Used & 401 \\
Number of Events & 160 \\
Number of Trials & 401
\end{tabular}
\begin{tabular}{llr}
\multicolumn{2}{c}{ Response Profile } \\
\begin{tabular}{c} 
Ordered \\
Value
\end{tabular} & svr & Frequency
\end{tabular}
?ROC GENMOD is modeling the probability that svr='1'.

Parameter Information

Parameter Effect
Prm1 Intercept
Prm2 male

Criteria For Assessing Goodness Of Fit
\begin{tabular}{lrrr} 
Criterion & DF & Value & Value/DF \\
Deviance & 399 & 533.7882 & \\
Scaled Deviance & 399 & 533.7882 & 1.3378 \\
Pearson Chi-Square & 399 & 401.0000 & 1.3378 \\
Scaled Pearson X2 & 399 & 401.0000 & 1.0050 \\
Log Likelihood & & -266.8941 & 1.0050 \\
\end{tabular}

Algorithm converged.
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{The GENMOD Procedure} \\
\hline \multicolumn{8}{|c|}{Analysis Of Parameter Estimates} \\
\hline Parameter & DF & Estimate & Standard Error & Wald 95 & \begin{tabular}{l}
nfidence \\
s
\end{tabular} & \begin{tabular}{l}
Chi- \\
Square
\end{tabular} & Pr > ChiSq \\
\hline Intercept & 1 & -0.7369 & 0.0882 & -0.9099 & -0.5640 & 69.78 & \(<.0001\) \\
\hline male & 1 & -0.2950 & 0.1213 & -0.5326 & -0.0573 & 5.92 & 0.0150 \\
\hline Scale & 0 & 1.0000 & 0.0000 & 1.0000 & 1.0000 & & \\
\hline
\end{tabular}

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis
\begin{tabular}{lrrr} 
Source & DF & \begin{tabular}{c} 
Chi - \\
Square
\end{tabular} & Pr > ChiSq \\
male & 1 & 5.64 & 0.0175
\end{tabular}

Contrast Estimate Results
\begin{tabular}{lrrrrrr} 
Label & Estimate & \begin{tabular}{c} 
Standard \\
Error
\end{tabular} & Alpha & Confidence Limits & Square & \\
Beta male & & & & & & \\
Exp (Beta male) & -0.2950 & 0.1213 & 0.05 & -0.5326 & -0.0573 & 5.92
\end{tabular}
```

replication of selected results in table 3: SVR<=>variables of interest

```

The GENMOD Procedure

Model Information
\begin{tabular}{lr} 
Data Set & WORK.ALL24_FU2 \\
Distribution & Binomial \\
Link Function & Log \\
Dependent Variable & svr
\end{tabular}
\begin{tabular}{ll} 
Number of Observations Read & 401 \\
Number of Observations Used & 401 \\
Number of Events & 160 \\
Number of Trials & 401
\end{tabular}
\begin{tabular}{llr}
\multicolumn{2}{c}{ Response Profile } \\
\begin{tabular}{c} 
Ordered \\
Value
\end{tabular} & svr & Frequency
\end{tabular}
?ROC GENMOD is modeling the probability that svr='1'.

Parameter Information

Parameter Effect
Prm1 Intercept
Prm2 age_5

Criteria For Assessing Goodness Of Fit
\begin{tabular}{lrrr} 
Criterion & DF & Value & Value/DF \\
Deviance & 399 & 538.0465 & 1.3485 \\
Scaled Deviance & 399 & 538.0465 & 1.3485 \\
Pearson Chi-Square & 399 & 400.9357 & 1.0049 \\
Scaled Pearson X2 & 399 & 400.9357 & 1.0049 \\
Log Likelihood & & -269.0233 &
\end{tabular}

Algorithm converged.
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{The GENMOD Procedure} \\
\hline \multicolumn{8}{|c|}{Analysis Of Parameter Estimates} \\
\hline Parameter & DF & Estimate & Standard Error & Wald 95 L & idence & \begin{tabular}{l}
Chi- \\
Square
\end{tabular} & Pr > Chisq \\
\hline Intercept & 1 & -0.4962 & 0.3525 & -1.1872 & 0.1947 & 1.98 & 0.1593 \\
\hline age_5 & 1 & -0.0441 & 0.0368 & -0.1162 & 0.0280 & 1.44 & 0.2305 \\
\hline Scale & 0 & 1.0000 & 0.0000 & 1.0000 & 1.0000 & & \\
\hline
\end{tabular}

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis
\begin{tabular}{lrrr} 
Source & DF & \begin{tabular}{c} 
Chi - \\
Square
\end{tabular} & Pr > Chisq \\
age_5 & 1 & 1.38 & 0.2396
\end{tabular}

Contrast Estimate Results
\begin{tabular}{lrrrrrr} 
Label & Estimate & \begin{tabular}{c} 
Standard \\
Error
\end{tabular} & Alpha & Confidence Limits & Square & Pr \(>\) ChiSc \\
3eta age_5 & -0.0441 & 0.0368 & 0.05 & -0.1162 & 0.0280 & 1.44 \\
Exp(Beta age_5) & 0.9568 & 0.0352 & 0.05 & 0.8903 & 1.0284 & 0.2305
\end{tabular}
```

replication of selected results in table 3: SVR<=>variables of interest

```

The GENMOD Procedure

Model Information
\begin{tabular}{lr} 
Data Set & WORK.ALL24_FU2 \\
Distribution & Binomial \\
Link Function & Log \\
Dependent Variable & svr
\end{tabular}
\begin{tabular}{lr} 
Number of Observations Read & 401 \\
Number of Observations Used & 395 \\
Number of Events & 157 \\
Number of Trials & 395 \\
Missing Values & 6
\end{tabular}
\begin{tabular}{llr}
\multicolumn{2}{c}{ Response Profile } \\
\begin{tabular}{c} 
Ordered \\
Value
\end{tabular} & svr & Frequency
\end{tabular}
?ROC GENMOD is modeling the probability that svr='1'.
\begin{tabular}{|c|c|c|c|}
\hline & Parameter & Effect & \\
\hline & Prm1 & Intercept & \\
\hline & Prm2 & hsorless & \\
\hline \multicolumn{4}{|c|}{Criteria For Assessing Goodness Of Fit} \\
\hline Criterion & DF & Value & Value/DF \\
\hline Deviance & 393 & 524.2455 & 1.3340 \\
\hline Scaled Deviance & 393 & 524.2455 & 1.3340 \\
\hline Pearson Chi-Square & e 393 & 395.0000 & 1.0051 \\
\hline Scaled Pearson X2 & 393 & 395.0000 & 1.0051 \\
\hline Log Likelihood & & -262.1228 & \\
\hline
\end{tabular}

Algorithm converged.
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{The GENMOD Procedure} \\
\hline \multicolumn{8}{|c|}{Analysis Of Parameter Estimates} \\
\hline Parameter & DF & Estimate & Standard Error & Wald 95 Li & fidence & \begin{tabular}{l}
Chi- \\
Square
\end{tabular} & Pr > ChiSq \\
\hline Intercept & 1 & -0.8004 & 0.0721 & -0.9417 & -0.6591 & 123.28 & \(<.0001\) \\
\hline hsorless & 1 & -0.3367 & 0.1361 & -0.6034 & -0.0700 & 6.12 & 0.0133 \\
\hline Scale & 0 & 1.0000 & 0.0000 & 1.0000 & 1.0000 & & \\
\hline
\end{tabular}

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis
\begin{tabular}{lrrr} 
Source & DF & \begin{tabular}{r} 
Chi - \\
Square
\end{tabular} & Pr \(>\) ChiSq \\
hsorless & 1 & 6.61 & 0.0101
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Contrast Estimate Results} \\
\hline Label & Estimate & Standard Error & Alpha & Confidence & Limits & \begin{tabular}{l}
Chi - \\
Square
\end{tabular} & Pr > ChiSq \\
\hline Beta hsorless & -0.3367 & 0.1361 & 0.05 & -0.6034 & -0.0700 & 6.12 & 0.0133 \\
\hline Exp (Beta hsorless) & 0.7141 & 0.0972 & 0.05 & 0.5470 & 0.9324 & & \\
\hline
\end{tabular}
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
                    The GENMOD Procedure
                    Model Information
Data Set WORK.ALL24_FU2
Distribution Binomial Link Function Log Dependent Variable svr
Number of Observations Read 401
Number of Observations Used 398
Number of Events 158
Number of Trials 398
Missing Values 3
\begin{tabular}{llr}
\multicolumn{2}{c}{ Response Profile } \\
\begin{tabular}{c} 
Ordered \\
Value
\end{tabular} & svr & Frequency
\end{tabular}
?ROC GENMOD is modeling the probability that svr='1'.


Algorithm converged.
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{The GENMOD Procedure} \\
\hline \multicolumn{8}{|c|}{Analysis Of Parameter Estimates} \\
\hline Parameter & DF & Estimate & Standard Error & Wald 95 Li & fidence & \begin{tabular}{l}
Chi- \\
Square
\end{tabular} & Pr > ChiSq \\
\hline Intercept & 1 & 0.1589 & 0.2919 & -0.4131 & 0.7309 & 0.30 & 0.5862 \\
\hline wgtkg_5 & 1 & -0.0634 & 0.0177 & -0.0980 & -0.0287 & 12.87 & 0.0003 \\
\hline Scale & 0 & 1.0000 & 0.0000 & 1.0000 & 1.0000 & & \\
\hline
\end{tabular}

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis
\begin{tabular}{lccc} 
Source & DF & \begin{tabular}{c} 
Chi - \\
Square
\end{tabular} & Pr \(>\) Chisq \\
wgtkg_5 & 1 & 13.39 & 0.0003
\end{tabular}

Contrast Estimate Results
\begin{tabular}{lrrrrrr} 
Label & Estimate & \begin{tabular}{c} 
Standard \\
Error
\end{tabular} & Alpha & Confidence Limits & \begin{tabular}{c} 
Chi- \\
Square
\end{tabular} & Pr \(>\) ChiSq
\end{tabular}
```

replication of selected results in table 3: SVR<=>variables of interest

```

The GENMOD Procedure
Model Information
Data Set WORK.ALL24_FU2
Distribution Binomial Link Function Log Dependent Variable svr

Number of Observations Read 401
Number of Observations Used 394
Number of Events 155
Number of Trials 394
Missing Values 7
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Response Profile} \\
\hline Ordered & & Total \\
\hline Value & svr & Frequency \\
\hline 1 & 1 & 155 \\
\hline 2 & 0 & 239 \\
\hline
\end{tabular}
?ROC GENMOD is modeling the probability that svr='1'.


Algorithm converged.
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{The GENMOD Procedure} \\
\hline \multicolumn{8}{|c|}{Analysis Of Parameter Estimates} \\
\hline Parameter & DF & Estimate & Standard Error & Wald 95 & fidence & \begin{tabular}{l}
Chi- \\
Square
\end{tabular} & Pr > ChiSq \\
\hline Intercept & 1 & -0.2558 & 0.3353 & -0.9131 & 0.4014 & 0.58 & 0.4455 \\
\hline bmi & 1 & -0.0232 & 0.0116 & -0.0460 & -0.0005 & 4.00 & 0.0456 \\
\hline Scale & 0 & 1.0000 & 0.0000 & 1.0000 & 1.0000 & & \\
\hline
\end{tabular}

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis
\begin{tabular}{lrrr} 
Source & DF & \begin{tabular}{c} 
Chi - \\
Square
\end{tabular} & Pr \(>\) ChiSq \\
bmi & 1 & 4.26 & 0.0390
\end{tabular}

Contrast Estimate Results
\begin{tabular}{lrrrrrr} 
Label & Estimate & \begin{tabular}{r} 
Standard \\
Error
\end{tabular} & Alpha & Confidence Limits & \begin{tabular}{c} 
Chi- \\
Square
\end{tabular} & Pr \(>\) ChiSq
\end{tabular}
```

replication of selected results in table 3: SVR<=>variables of interest

```
                    The GENMOD Procedure
                    Model Information
\begin{tabular}{lr} 
Data Set & WORK.ALL24_FU2 \\
Distribution & Binomial \\
Link Function & Log \\
Dependent Variable & svr
\end{tabular}
\begin{tabular}{ll} 
Number of Observations Read & 401 \\
Number of Observations Used & 401 \\
Number of Events & 160 \\
Number of Trials & 401
\end{tabular}
\begin{tabular}{llr}
\multicolumn{2}{c}{ Response Profile } \\
\begin{tabular}{rlr} 
Ordered \\
Value
\end{tabular} & svr & Frequency
\end{tabular}
?ROC GENMOD is modeling the probability that svr='1'.


Algorithm converged.
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{The GENMOD Procedure} \\
\hline \multicolumn{8}{|c|}{Analysis Of Parameter Estimates} \\
\hline Parameter & DF & Estimate & Standard Error & Wald 95 Li & \begin{tabular}{l}
nfidence \\
s
\end{tabular} & ChiSquare & Pr > ChiSq \\
\hline Intercept & 1 & -0.8678 & 0.0618 & -0.9888 & -0.7467 & 197.30 & \(<.0001\) \\
\hline MXDIAB & 1 & -0.7164 & 0.3212 & -1.3459 & -0.0868 & 4.97 & 0.0257 \\
\hline Scale & 0 & 1.0000 & 0.0000 & 1.0000 & 1.0000 & & \\
\hline
\end{tabular}

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis
\begin{tabular}{lrrr} 
Source & DF & \begin{tabular}{c} 
Chi - \\
Square
\end{tabular} & Pr > ChiSq \\
MXDIAB & 1 & 7.34 & 0.0067
\end{tabular}

Contrast Estimate Results
\begin{tabular}{lcccccc} 
Label & Estimate & \begin{tabular}{c} 
Standard \\
Error \\
ZhiSq
\end{tabular} & Alpha & Confidence Limits & \begin{tabular}{c} 
Chi- \\
Square
\end{tabular} & Pr \(>\)
\end{tabular}
```

replication of selected results in table 3: SVR<=>variables of interest

```

\section*{The GENMOD Procedure}

Model Information
\begin{tabular}{lr} 
Data Set & WORK.ALL24_FU2 \\
Distribution & Binomial \\
Link Function & Log \\
Dependent Variable & svr
\end{tabular}
\begin{tabular}{ll} 
Number of Observations Read & 401 \\
Number of Observations Used & 401 \\
Number of Events & 160 \\
Number of Trials & 401
\end{tabular}
\begin{tabular}{llr}
\multicolumn{2}{c}{ Response Profile } \\
Ordered \\
Value & svr & Frequency
\end{tabular}
?ROC GENMOD is modeling the probability that svr='1'.

Parameter Information

Parameter Effect
Prm1 Intercept
Prm2 MXBP

Criteria For Assessing Goodness Of Fit
\begin{tabular}{lrrr} 
Criterion & DF & Value & Value/DF \\
Deviance & 399 & 534.4976 & \\
Scaled Deviance & 399 & 534.4976 & 1.3396 \\
Pearson Chi-Square & 399 & 401.0000 & 1.3396 \\
Scaled Pearson X2 & 399 & 401.0000 & 1.0050 \\
Log Likelihood & & -267.2488 & 1.0050 \\
\end{tabular}

Algorithm converged.
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{The GENMOD Procedure} \\
\hline \multicolumn{8}{|c|}{Analysis Of Parameter Estimates} \\
\hline Parameter & DF & Estimate & Standard Error & \begin{tabular}{l}
Wald 95 \\
Li
\end{tabular} & fidence & ChiSquare & Pr > ChiSq \\
\hline Intercept & 1 & -0.8303 & 0.0689 & -0.9653 & -0.6954 & 145.45 & \(<.0001\) \\
\hline MXBP & 1 & -0.3081 & 0.1460 & -0.5943 & -0.0219 & 4.45 & 0.0348 \\
\hline Scale & 0 & 1.0000 & 0.0000 & 1.0000 & 1.0000 & & \\
\hline
\end{tabular}

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis
\begin{tabular}{lrrr} 
Source & DF & \begin{tabular}{c} 
Chi - \\
Square
\end{tabular} & Pr > Chisq \\
MXBP & 1 & 4.93 & 0.0264
\end{tabular}

Contrast Estimate Results
\begin{tabular}{lrrrrrr} 
Label & Estimate & \begin{tabular}{c} 
Standard \\
Error
\end{tabular} & Alpha & Confidence Limits & \begin{tabular}{c} 
Chi- \\
Square
\end{tabular} & \\
Beta mxbp & & & & & \\
Exp (Beta mxbp) & -0.3081 & 0.1460 & 0.05 & -0.5943 & -0.0219 & 4.45
\end{tabular}
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
                    The GENMOD Procedure
                    Model Information
Data Set WORK.ALL24_FU2
Distribution Binomial Link Function Log Dependent Variable svr
\begin{tabular}{lr} 
Number of Observations Read & 401 \\
Number of Observations Used & 393 \\
Number of Events & 157 \\
Number of Trials & 393 \\
Missing Values & 8
\end{tabular}
\begin{tabular}{llr}
\multicolumn{2}{c}{ Response Profile } \\
\begin{tabular}{c} 
Ordered \\
Value
\end{tabular} & svr & Frequency
\end{tabular}
?ROC GENMOD is modeling the probability that svr='1'.


Algorithm converged.
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```

The GENMOD Procedure
Analysis Of Parameter Estimates
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parameter & DF & Estimate & Standard Error & \multicolumn{2}{|l|}{Wald 95\% Confidence Limits} & ChiSquare & Pr & > ChiSq \\
\hline Intercept & 1 & -0.9687 & 0.0817 & -1.1287 & -0.8086 & 140.65 & & \(<.0001\) \\
\hline currentsmk & 1 & 0.1303 & 0.1247 & -0.1140 & 0.3747 & 1.09 & & 0.2958 \\
\hline Scale & 0 & 1.0000 & 0.0000 & 1.0000 & 1.0000 & & & \\
\hline
\end{tabular}

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

Source DF Square \(\operatorname{Pr}>\) ChiSq
\(\begin{array}{llll}\text { currentsmk } & 1 & 1.07 & 0.3008\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Contrast Estimate Results} \\
\hline Label & Estimate & Sta ndard Error & Alpha & Confidence & Limits & ChiSquare & Pr > ChiSq \\
\hline Beta currentsmk & 0.1303 & 0.1247 & 0.05 & -0.1140 & 0.3747 & 1.09 & 0.2958 \\
\hline Exp (Beta currentsmk) & 1.1392 & 0.1420 & 0.05 & 0.8923 & 1.4545 & & \\
\hline
\end{tabular}
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
                    The GENMOD Procedure
                    Model Information
Data Set WORK.ALL24_FU2
Distribution Binomial Link Function Log Dependent Variable svr
\begin{tabular}{lr} 
Number of Observations Read & 401 \\
Number of Observations Used & 399 \\
Number of Events & 160 \\
Number of Trials & 399 \\
Missing Values & 2
\end{tabular}
\begin{tabular}{llr}
\multicolumn{2}{c}{ Response Profile } \\
\begin{tabular}{c} 
Ordered \\
Value
\end{tabular} & svr & Frequency
\end{tabular}
?ROC GENMOD is modeling the probability that svr='1'.


Algorithm converged.
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{The GENMOD Procedure} \\
\hline \multicolumn{8}{|c|}{Analysis Of Parameter Estimates} \\
\hline Parameter & DF & Estimate & Standard Error & \begin{tabular}{l}
Wald 95 \\
Li
\end{tabular} & fidence & \begin{tabular}{l}
Chi- \\
Square
\end{tabular} & Pr > Chisq \\
\hline Intercept & 1 & -0.9614 & 0.0942 & -1.1461 & -0.7768 & 104.13 & \(<.0001\) \\
\hline alt_100 & 1 & 0.0522 & 0.0753 & -0.0954 & 0.1998 & 0.48 & 0.4881 \\
\hline Scale & 0 & 1.0000 & 0.0000 & 1.0000 & 1.0000 & & \\
\hline
\end{tabular}

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis
\begin{tabular}{lrrr} 
Source & DF & \begin{tabular}{c} 
Chi - \\
Square
\end{tabular} & Pr > Chisq \\
alt_100 & 1 & 0.44 & 0.5086
\end{tabular}

Contrast Estimate Results
\begin{tabular}{lrrrrrr} 
Label & Estimate & \begin{tabular}{c} 
Standard \\
Error
\end{tabular} & Alpha & Confidence Limits & \begin{tabular}{c} 
Chi- \\
Square
\end{tabular} & Pr \(>\) ChiSq
\end{tabular}
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
                    The GENMOD Procedure
                    Model Information
Data Set WORK.ALL24_FU2
Distribution Binomial
                Link Function Log
                Dependent Variable svr
    Number of Observations Read 401
    Number of Observations Used 399
    Number of Events 160
    Number of Trials 399
    Missing Values 2
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Response Profile} \\
\hline Ordered & & Total \\
\hline Value & svr & Frequency \\
\hline 1 & 1 & 160 \\
\hline 2 & 0 & 239 \\
\hline
\end{tabular}
?ROC GENMOD is modeling the probability that svr='1'.


Algorithm converged.
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{The GENMOD Procedure} \\
\hline \multicolumn{8}{|c|}{Analysis Of Parameter Estimates} \\
\hline Parameter & DF & Estimate & Standard Error & \begin{tabular}{l}
Wald 95 \\
L
\end{tabular} & idence & \begin{tabular}{l}
Chi- \\
Square
\end{tabular} & Pr > Chisq \\
\hline Intercept & 1 & -0.7342 & 0.1099 & -0.9496 & -0.5188 & 44.64 & \(<.0001\) \\
\hline ast_100 & 1 & -0.2853 & 0.1588 & -0.5966 & 0.0259 & 3.23 & 0.0724 \\
\hline Scale & 0 & 1.0000 & 0.0000 & 1.0000 & 1.0000 & & \\
\hline
\end{tabular}

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis
\begin{tabular}{lrrr} 
Source & DF & \begin{tabular}{c} 
Chi - \\
Square
\end{tabular} & Pr \(>\) ChiSq \\
ast_100 & 1 & 4.04 & 0.0445
\end{tabular}

Contrast Estimate Results
\begin{tabular}{lrrrrrr} 
Label & Estimate & \begin{tabular}{c} 
Standard \\
Error
\end{tabular} & Alpha & Confidence Limits & Chi- & Square
\end{tabular}
```

replication of selected results in table 3: SVR<=>variables of interest

```
                    The GENMOD Procedure
                    Model Information
Data Set WORK.ALL24_FU2
Distribution Binomial Link Function Log Dependent Variable svr
\begin{tabular}{lr} 
Number of Observations Read & 401 \\
Number of Observations Used & 395 \\
Number of Events & 158 \\
Number of Trials & 395 \\
Missing Values & 6
\end{tabular}
\begin{tabular}{llr}
\multicolumn{2}{c}{ Response Profile } \\
\begin{tabular}{c} 
Ordered \\
Value
\end{tabular} & svr & Frequency
\end{tabular}
?ROC GENMOD is modeling the probability that svr='1'.
\begin{tabular}{|c|c|c|c|}
\hline & Parameter & Effect & \\
\hline & Prm1 & Intercept & \\
\hline & Prm2 & HGB & \\
\hline \multicolumn{4}{|c|}{Criteria For Assessing Goodness Of Fit} \\
\hline Criterion & DF & Value & Value/DF \\
\hline Deviance & 393 & 530.5994 & 1.3501 \\
\hline Scaled Deviance & 393 & 530.5994 & 1.3501 \\
\hline Pearson Chi-Square & e 393 & 395.1132 & 1.0054 \\
\hline Scaled Pearson X2 & 393 & 395.1132 & 1.0054 \\
\hline Log Likelihood & & -265.2997 & \\
\hline
\end{tabular}

Algorithm converged.
```

replication of selected results in table 3: SVR<=>variables of interest

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{The GENMOD Procedure} \\
\hline \multicolumn{8}{|c|}{Analysis Of Parameter Estimates} \\
\hline Parameter & DF & Estimate & Standard Error & \begin{tabular}{l}
Wald 95 \\
Li
\end{tabular} & idence & \begin{tabular}{l}
Chi- \\
Square
\end{tabular} & Pr > Chisq \\
\hline Intercept & 1 & -0.1984 & 0.6885 & -1.5479 & 1.1511 & 0.08 & 0.7732 \\
\hline HGB & 1 & -0.0492 & 0.0473 & -0.1419 & 0.0435 & 1.08 & 0.2984 \\
\hline Scale & 0 & 1.0000 & 0.0000 & 1.0000 & 1.0000 & & \\
\hline
\end{tabular}

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis
\begin{tabular}{lrrr} 
Source & DF & \begin{tabular}{c} 
Chi - \\
Square
\end{tabular} & Pr > ChiSq \\
HGB & 1 & 1.08 & 0.2987
\end{tabular}

Contrast Estimate Results
\begin{tabular}{lrrrrrr} 
Label & Estimate & \begin{tabular}{c} 
Standard \\
Error
\end{tabular} & Alpha & Confidence Limits & Chi- & \\
Square & Pr \(>\) ChiSq
\end{tabular}
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
                    The GENMOD Procedure
                    Model Information
Data Set WORK.ALL24_FU2
Distribution Binomial
                Link Function Log
                Dependent Variable svr
    Number of Observations Read 401
    Number of Observations Used 395
    Number of Events 158
    Number of Trials 395
    Missing Values 6
\begin{tabular}{|c|c|c|}
\hline Ordered & & Total \\
\hline Value & svr & Frequency \\
\hline 1 & 1 & 158 \\
\hline 2 & 0 & 237 \\
\hline
\end{tabular}
?ROC GENMOD is modeling the probability that svr='1'.
\begin{tabular}{|c|c|c|c|}
\hline & Parameter & Effect & \\
\hline & Prm1 & Intercept & \\
\hline & Prm2 & WBC & \\
\hline \multicolumn{4}{|c|}{Criteria For Assessing Goodness Of Fit} \\
\hline Criterion & DF & Value & Value/DF \\
\hline Deviance & 393 & 529.0558 & 1.3462 \\
\hline Scaled Deviance & 393 & 529.0558 & 1.3462 \\
\hline Pearson Chi-Square & e 393 & 394.5044 & 1.0038 \\
\hline Scaled Pearson X2 & 393 & 394.5044 & 1.0038 \\
\hline Log Likelihood & & -264.5279 & \\
\hline
\end{tabular}

Algorithm converged.
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{The GENMOD Procedure} \\
\hline \multicolumn{8}{|c|}{Analysis Of Parameter Estimates} \\
\hline Parameter & DF & Estimate & Standard Error & Wald 95 L & fidence & \begin{tabular}{l}
Chi- \\
Square
\end{tabular} & Pr > ChiSq \\
\hline Intercept & 1 & -1.1977 & 0.1840 & -1.5583 & -0.8370 & 42.36 & \(<.0001\) \\
\hline WBC & 1 & 0.0441 & 0.0260 & -0.0069 & 0.0951 & 2.87 & 0.0903 \\
\hline Scale & 0 & 1.0000 & 0.0000 & 1.0000 & 1.0000 & & \\
\hline
\end{tabular}

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

Chi-
Source DF Square Pr > Chisq
\(\begin{array}{llll}\text { WBC } & 1 & 2.62 & 0.1053\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Contrast Estimate Results} \\
\hline Label & Estimate & Standard Error & Alpha & Confidence & Limits & ChiSquare & Pr > ChiSq \\
\hline Beta wbc & 0.0441 & 0.0260 & 0.05 & -0.0069 & 0.0951 & 2.87 & 0.0903 \\
\hline Exp (Beta wbc) & 1.0451 & 0.0272 & 0.05 & 0.9931 & 1.0997 & & \\
\hline
\end{tabular}
```

replication of selected results in table 3: SVR<=>variables of interest

```
                    The GENMOD Procedure
                    Model Information
Data Set WORK.ALL24_FU2
Distribution Binomial Link Function Log Dependent Variable svr
Number of Observations Read 401
Number of Observations Used 399
Number of Events 160
Number of Trials 399
Missing Values 2
\begin{tabular}{llr}
\multicolumn{2}{c}{ Response Profile } \\
\begin{tabular}{c} 
Ordered \\
Value
\end{tabular} & svr & Frequency
\end{tabular}
?ROC GENMOD is modeling the probability that svr='1'.

Parameter Information
Parameter Effect
Prm1 Intercept
Prm2 blog10vload

Criteria For Assessing Goodness Of Fit
\begin{tabular}{lrrr} 
Criterion & DF & Value & Value/DF \\
Deviance & 397 & 524.7746 & 1.3219 \\
Scaled Deviance & 397 & 524.7746 & 1.3219 \\
Pearson Chi-Square & 397 & 398.7280 & 1.0044 \\
Scaled Pearson X2 & 397 & 398.7280 & 1.0044
\end{tabular}

Algorithm converged.
```

 replication of selected results in table 3: SVR<=>variables of interest
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameter & DF & Estimate & Standard Error & \multicolumn{2}{|l|}{Wald 95\% Confidence Limits} & ChiSquare & Pr > Chisq \\
\hline Intercept & 1 & 0.6195 & 0.2814 & 0.0681 & 1.1709 & 4.85 & 0.0277 \\
\hline blog10vload & 1 & -0.2476 & 0.0480 & -0.3416 & -0.1536 & 26.64 & <. 0001 \\
\hline Scale & 0 & 1.0000 & 0.0000 & 1.0000 & 1.0000 & & \\
\hline
\end{tabular}

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis
\begin{tabular}{lrrr} 
Source & \multicolumn{4}{c}{\begin{tabular}{c} 
Chi \\
SF
\end{tabular}} & Square & Pr ChiSq \\
blog10vload & 1 & 12.61 & 0.0004
\end{tabular}

Contrast Estimate Results
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Label} & \multicolumn{3}{|c|}{dard} & \multicolumn{4}{|c|}{i-} \\
\hline & Estimate & Error & Alpha & Confidence & Limits & Square & Pr > ChiSc \\
\hline Beta blog10vload & -0.2476 & 0.0480 & 0.05 & -0.3416 & -0.1536 & 26.64 & <. 0001 \\
\hline Exp (Beta blog10vload) & 0.7807 & 0.0374 & 0.05 & 0.7106 & 0.8576 & & \\
\hline
\end{tabular}```


[^0]:    ${ }^{1}$ Per study publication, p. 471.
    ${ }^{2}$ Per E-Mail communication with the DCC, 8/13/07.
    ${ }^{3}$ For purposes of the DSIC, generalized estimating equations (GEE) were used to estimate relative risk of univariable associations with SVR. (The study publication does not explicitly state the statistical methods used to assess univariable associations.)
    ${ }^{4}$ The study publication states that $S A S$ v.8.02 and the R language and environment were used in analyses.
    ${ }^{5}$ Patient \#295076 was found to be ineligible, even though the patient collected data for baseline and treatment visits.
    ${ }^{6}$ Communication with the DCC verified that published baseline viral load levels were in units of $\log _{10}$. These units are not stated anywhere in Table 1 of the publication (p.473). By assessing $\log _{10}$ of the archived intent-to-treat viral load variable < vload_itt>, we succeeded in replicating published baseline values.

