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Mission COREN
Established in 2003 to facilitate the sharing of data, sealy/
specimens, and other resources generated from studies 8
supported by NIDDK and within NIDDK's mission by making :é‘#%

these resources available for request to the broader
scientific and research community.

DATA SYSTEM

« Supports receipt and distribution of data and specimens
in @ manner that is ethical, equitable, and efficient

» Enables investigators not involved with the original work
to test new hypotheses without the need to collect new

Fesources Imaging Data Files Clinical Datasets Biospecimens
« Promotes FAIR (Findable, Accessible, Interoperable, and @ )
Reusable) and TRUST (Transparency, Responsibility, User >8.000
focus, Sustainability, and Technology) principles : 15.8 ™ rom186:IinicaIstudies : >16 m
@Wﬁ @ Registered Users Weekly Users Public Releases
’*%% 4; Recorded past tutorials, webinars, and other educational “—_TI_—J g‘% g% “L!

;Pﬂ ;% resources can be found on the NIDDK-CR website N 6’785 : >5,000 \ >800
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The NIDDK-CR is a part of the broader NIDDK-funded biomedical data ecosystem and plays a key role in NIH's
FAIRness and TRUSTworthiness goals. The NIDDK-CR houses a broad range of data types for secondary research and
provides access to specimens and direct links to other repositories with additional resources such as genomics data.
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Insights and Interactions

Streamlining end-to-end data science lifecycle @\ ‘g fﬁ 248 0 i;J
and discovery of data-driven biomedical insights. A
Search Access Services Communication Collaborate & Chatbot Data Insights
Services Share

Innovation and ease Of use * Data Analytics and Al Services

A cloud-based analytics environment
where researchers and data scientists
can access a suite of integrated analytics
tools and cloud computing resources to
participate in data challenges and Al
innovation.

Data Discovery Descriptive Predictive Cognitive Al User-Centric
« Search * Usage Reports * Predictive modeling +Natural Language « Personalization
¢ Query *Dashboards with biomarkers Processing « Collaboration
« Data Discovery «Self Service Bl . D_isease_ Forecasting «Machine Learning workspace
and Exploration * Simulation «Generative Al « Communication

Prescriptive Data Analytics and Al Tools
'_-l .u t;
= O

Data Services / AP Connectors

_.Analytics Workbench

Expected Benefits of Analytics Workbench:

Promote Support Al Minimize Data
Collaboration Innovation Movement )
Data and Cloud Infrastructure Foundation

Improve User Discover Advance NIDDK
Experience Data Insights Research Mission

Platform Provisioning | Deployment | Monitoring | Security | Access | User Management
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Goals of NIDDK-CR Data-science centric challenge series

 Develop tools, approaches, models and/or methods to
increase data interoperability and usability for artificial
intelligence (Al) and machine learning (ML) applications

« Augment and enhance existing data for future secondary
research, including data-driven discovery by Al/ML
researchers

 Discover innovative approaches to enhance the utility of
datasets for Al/ML applications

% Visit our website for more information on our data-centric movement
# and to learn more about our past data-challenges
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About the Series

« Aims to accelerate data science and Al-driven biomedical research by fostering collaboration between

biomedical researchers and experts in the field
Monthly webinar held on the last Thursday of each month

Upcoming Webinars

Data science fundamentals

Artificial Intelligence fundamentals

FAIR data sharing

Privacy protections for sharing human research participants’ data

Different privacy preserving techniques and implications for secondary researchers

Challenges, opportunities, and considerations for secondary researchers using electronic health records and
real-world data sources

Impact and innovations realized

Learn more about the webinar series, register for future webinars, and access past webinars
materials and recordings
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Arica Christensen is a Lead Associate Data Scientist at Booz Allen Hamilton, with a B.S. in
Industrial and Systems Engineering from the University of San Diego. She specializes in natural
language processing techniques and supervised machine learning. Arica has supported
NAVWAR C4l PMW 130 on Project RAVEN applying predictive and proactive analytics for fleet
readiness and cyber awareness. Currently Arica supports the Chief Digital Artificial Intelligence
Office focusing on the development of dashboards and data pipelines measuring risk and
resilience for all sailors at the individual and UIC level. Additionally, Arica leads the NAVWAR 4.0
Data Science Learning Program to create and facilitate trainings Navy wide on data science,
machine learning, and artificial intelligence techniques.

Gordon Aiello is a Lead Scientist at Booz Allen Hamilton with a PhD in Applied Mathematical
and Computational Sciences. He works full-time developing and delivering specialized data
science, artificial intelligence, machine learning, and Python trainings for clients in the Navy and
Intelligence Community. Prior to joining Booz Allen Hamilton, Dr. Aiello worked in the Office of
Macroeconomic Affairs at the U.S. Department of State, using machine learning techniques to
analyze developing and emerging market economies. Additionally, he has taught courses on
data science and the R programming language for the Foundation for Advanced Education in
the Sciences (FAES) at the NIH. He is passionate about working with others to expand their
understanding of data science techniques and their applications.
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NIDDK-CR Data Science
Meet the Experts Webinar Series

Feb 271, 2025

Presented by: Booz Allen Hamilton
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 Avoid CUI/PII/PHI conversations

* Questions in Teams Chat are
encouraged

* Due to size of class, stay on
mute until end of class
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Instructor Introductions




NAVWAR

/" Data Science Learning Program

If you're new to data science, start your learning journey with the Foundations courses. A more in-depth learning track starts with the Data Science Fundamentals course and
continues to the Data Science Labs. Those interested in more specialized topics can explore courses in the Select Topics track.

Foundations for

Data Citizens

» Data Citizen best
practices

« Data govemance

« Data-driven
organization

udemy

INTRODUCTION

Introduction to Data

-

Foundations of

Data Analytics

For NAVWAR
supervisors

 Data Science Overview
* Machine Learning and
Artificial Intelligence

udemy

Python Fundamentals for

Data Science Fundamentals

» Comprehensive intro to Data Science

 Python programming

» Statistics, Probability and Linear
Algebra refresher

» Machine learning and Atrtificial
Intelligence
s/ ] Live
222 Training

10.5 hours (3 sessions)

udemy

THEORY-TO-PRACTICE

|:>  Tabular data cleansing and

Artificial Intelligence

Data Science Project Lab*

 Theory-to-practice

 Case study format
Hands-on exercises

processing techniques
* Full-cycle analytics process

‘ Live Q
'n/.- Training JUPITER

@® 12 hours (3 sessions)

Data Science NLP Lab*

 Theory-to-practice
 Case study format
* Hands-on exercises
 Natural Language Processing
Techniques
 Large Language Models

iZl Live Q

222 Training JUPITER
12 hours (3 sessions)

*Completion of the Introduction to Python course is recommended for those without programming experience.

Data Science for Managers

Developed in partnership with NGA

» Management responsibilities in Data
Science Projects

» Ethical considerations in Data Science

 Data Science and Al Opportunities

Fundamentals

* Al initiatives and foundational Al
Al ecosystems and Al operations
* Responsible and Ethical Al

Data Science

* Foundational Python syntax
 Develop essential analytic skills
» Machine Learning and Artificial

Visualization

« Telling a story with your data
* How to create more impactful briefings
* Not product specific

7 L ~ Intelligence * Neural Networks
‘EI; #Ir\;?ning Udemy ’ s/ ] InPerson
ﬁ/’j Live Q ":‘ Live 222 Training
3 hours 222 Training JUPITER 222 Training ==
7 hours (2 sessions) 7 hours (2 sessions) 8 hours

SELECT TOPICS
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1. The Data Science Process

2. Supervised and Unsupervised
Learning Techniques

3. Deep Learning

4, Specialized Data Science Topics
1. Computer Vision
2. Time Series
3. Natural Language Processing
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The Data Science
Process
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The goal of data science is to extract meaningful insights from data.

Data - any kind of qualitative or quantitative set of values

« Common examples in data science today:
o Natural text: "I'm cold," "I'm not very cold"
o Categories: "yellow," "green," "red"
o Numbers: 1,2.53, -4
o Images:

Ve N

A
:
i

« Sometimes you have the data, sometimes you need to procure the data
Science - a systematic approach to building knowledge by testing hypotheses
* Think Scientific Method:
Define a hypothesis — Collect the data — Analyze results — Draw conclusions
» Hypotheses must be testable, and experiments must be reproducible
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Data is an application of ,and
Science Machine Learning is part of by applying algorithms
and statistics to extract knowledge and insights from data

Artificial
Intelligence

EWI
Learning

Artificial Intelligence (Al)

The theory and development of computer systems able to
perform tasks normally requiring human intelligence, such
as visual perception, speech recognition, decision-making,
and translation between languages
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Data Science in the Commercial

amazoncom Recommended for You

Amazon.com has new recommendations for you based on items you purchased or
told us you own.

LOOK INSIDE! LOOK INSIDE! LOOK INSIDE!
Google Ap; s
Google pps e

#

Google Apps Google Apps Googlepedia: The
Deciphered: Compute in Administrator Guide: A Ultimate Google
the Cloud to Streamline Private-Label Web Resource (3rd Edition)

Your Desktop Workspace

sE8E 8BS BBNN 3225

Openar
&

ChatG PT

Amazon: Recommendation Systems

Credit Card Fraud Detection

ChatGPT

@oec e
® =%

N Y

(X
(©) =

O

Hey Google, lock my front door.
Hey Google, show my security camera.

Hey Google, arm my security alarm.

[ ’

B /

Snapchat: Computer Vision

Google Voice Recognition

UPS ORION (On-Road Integrated
Optimization and Navigation)
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Predictive Analytics for Early Diagnosis - Data
science enables early detection of diseases by
analyzing patient data, identifying risk factors, and
improving treatment outcomes.

Personalized Medicine - Machine learning
models help tailor treatments based on a patient’s
genetic profile, lifestyle, and medical history,
leading to more effective therapies.

Early Detection and Progression Monitoring of
Kidney Disease - Data science helps analyze lab
results (e.g., creatinine levels, eGFR) to detect
kidney disease in its early stages and predict
progression, allowing for timely intervention.

Diabetes Prediction and Management -
Machine learning models can analyze patient
data, including glucose levels and lifestyle factors,
to predict diabetes risk, personalize treatment
plans, and optimize insulin management.
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Data Science Process

Problem
Statement

Data
Acquisition

Exploratory
Data Analysis

Data
Preparation

Modeling

Data
Visualization

Taking Action
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Navigate through a data science project using the seven-step data science
process:

1. Form a SMART problem statement, understanding what data science can and cannot
do

Acquire useful data that can assist in solving the problem statement

Explore data and analyze preliminary findings to leverage initial insights from the data
Prepare data for use in machine learning pipelines

Understand basic machine learning model concepts

Render compelling visualizations to communicate data-driven narratives to your
colleagues

7. Apply the insights gained from your data science project to your work

SOk wihe
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Data
Visualization

Data Exploratory Data

Acquisition Data Analysis || Preparation Modeling

Taking Action
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m) What Questions Can Data Science

» Data science can’t answer just any question
» Questions must be structured and attainable
» Afew questions to ask yourself to help you get started:
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* When developing your problem statements, think through whether the
question is SMART!

* Although SMART goals are not necessarily specific to data science, we can
use this methodology to make sure we create attainable problem statements

WHAT MAKES A GOAL SMART?

SMART

SPECIFIC. MEASURABLE. ACHIEVABLE. RELEVANT. TIME-BOUND

-{ Data Acquisition ]{ Explg:]ag@rs);sData }{ Data Preparation }{ Modeling }{ Data Visualization }{ Taking Action }
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The SMART Goals Funnel

What do you want to accomplish and why? g,
How will you do it? Whe needs to help?

What metrics will need to be reached in
order for the goal to be accomplished?

Do you have the skills, knowledge

- ®
and resources necessary?

Does it make sense for my team

- .
to prioritize this goal right now?

On what date will the goal need to
be successfully accomplished?

aNNOSE-3NIL Dk,
=
og

nerthpass

) ® @ @ @ @ @

Data Acquisition Explg:]aglc))/rs);sData Data Preparation Modeling Data Visualization Taking Action
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Healthcare Objective

« Researchers seek a data-driven approach to better
understand the factors that are most strongly associated
with chronic kidney disease.

* The aim of this project is to develop models using clinical
patient data to accurately predict chronic kidney disease.
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S - We will train machine learning models using clinical patient data to
predict who's at greatest risk for developing chronic kidney disease.

M - Success will be measured by the model's accuracy - targeting at

least 90%.

A - By leveraging existing data sets and proven analytics capabilities,

we'll work with resources readily available to the NIH.

R - The models will help researchers and medical providers make
objective, data-driven healthcare decisions by highlighting insights that

may be currently overlooked.
T - The models will be developed, validated, and ready for de

within 6 months, with a prototype ready for review in 3 months.

@ © @ & @ ® ® |
-{ Data Acquisition }{ Explg:]aggrs)gsData }{ Data Preparation J{ Modeling J{ Data Visualization }{ Taking Action
J

ployment
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Velocity

Hgh speed of dafo
flow, change
and processing

-'/l'
W,

> Veracity

@ @ & @ @ Gy,

Problem Exploratory Data : ; S . .
Statement Analysis Data Preparation Modeling Data Visualization Taking Action
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Structured Data Unstructured Data
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Data Acquisition: Data Structures

Relational
databaseas

Spreadsheats
Flat files In

Leagacy databasas:
* Hierarchical
* Malnframa

Record format Hu‘rﬂ-dlmun:lnnﬂi
databa :

Weab E-mail

=3 logs
feeds Word

fllas
Wab

pages

Problem
Statement

Processing

Multimedia

Valoa

Content
racognition

managameant

Instant
Documeant messaging

managemeant

Taxonomlies Wikis

Ontologles

Qﬂ

|.1.

Wll-; lFL DA

Tha Fre wkpslis

@

Data Preparation

@

Exploratory Data Modeling

Analysis

@

Data Visualization

Gy,

Taking Action
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A B C D G H I J K L M N (0] P Q R T U A" W X z
1 |id age bp sg al  su rbe pc pcc ba bgr bu sC sod pot hemo pcv  wc rc htn dm cad appet pe ane classification
2 0 48 80 1.02 1 0 normal notpresent notpresent 121 36 1.2 15.4 44 7800 5.2 yes yes no good no no ckd
3 1 7 50 1.02 4 0 normal notpresent notpresent 18 0.8 11.3 38 6000 no no no good no no ckd
4 2 62 80 1.01 2 3 normal normal notpresent notpresent 423 53 1.8 9.6 31 7500 no yes no poor no yes ckd
5 3 48 70  1.005 4 0 normal abnormal present notpresent 117 56 3.8 111 2.5 11.2 32 6700 3.9 yes no no poor yes yes ckd
6 4 51 80 1.01 2 0 normal normal notpresent notpresent 106 26 1.4 11.6 35 7300 4.6 no no no good no no ckd
7 5 60 90 1.015 3 0 notpresent notpresent 74 25 1.1 142 3.2 12.2 39 7800 44 yes yes no good yes no ckd
8 6 68 70 1.01 0 0 normal notpresent notpresent 100 54 24 104 4 12.4 36 no no no good no no ckd
9 7 24 1.015 2 4 normal abnormal notpresent notpresent 410 31 1.1 12.4 44 6900 5 no yes no good yes no ckd
10 8 52 100 1.015 3 0 normal abnormal present notpresent 138 60 1.9 10.8 33 9600 4 yes yes no good no yes ckd
11 9 53 90 1.02 2 0 abnormal abnormal present notpresent 70 107 7.2 114 3.7 9.5 29 12100 3.7 yes yes no poor no yes ckd
12 10 50 60 1.01 2 4 abnormal present notpresent 490 55 4 9.4 28 yes yes no good no yes ckd
13 11 63 70 1.01 3 0 abnormal abnormal present notpresent 380 60 2.7 131 4.2 10.8 32 4500 3.8 yes yes no poor yes no ckd
14 12 68 70  1.015 3 1 normal present notpresent 208 72 2.1 138 5.8 9.7 28 12200 3.4 yes yes yes poor yes no ckd
15 13 68 70 notpresent notpresent 98 86 4.6 135 3.4 9.8 yes  yes  yes poor yes no ckd
16 14 68 80 1.01 3 2 normal abnormal present present 157 90 4.1 130 6.4 5.6 16 11000 2.6 yes yes  yes poor yes no ckd
17 15 40 80 1.015 3 0 normal notpresent notpresent 76 162 9.6 141 4.9 7.6 24 3800 2.8 yes no no good no yes ckd
18 16 47 70 1.015 2 0 normal notpresent notpresent 99 46 2.2 138 4.1 12.6 no no no good no no ckd
19 17 47 80 notpresent notpresent 114 87 5.2 139 3.7 121 yes no no poor no no ckd
20 18 60 100 1.025 0 3 normal notpresent notpresent 263 27 1.3 135 4.3 12.7 37 11400 4.3 yes yes  yes good no no ckd
21 15 62 60 1.015 1 0 abnormal present notpresent 100 31 1.6 10.3 30 5300 3.7 yes no yes good no no ckd
22 20 61 80 1.015 2 0 abnormal abnormal notpresent notpresent 173 148 3.9 135 5.2 7.7 24 9200 3.2 yes yes yes poor yes yes ckd
23 21 60 90 notpresent notpresent 180 76 4.5 10.9 32 6200 3.6 yes yes  yes good no no ckd
24 22 48 80 1.025 4 0 normal abnormal notpresent notpresent 95 163 7.7 136 3.8 9.8 32 6900 3.4 yes no no good no yes ckd
Data Source: UC Irvine Machine Learning Repository
sl?;?gr!qegt Explgggrs)gsData Data Preparation Modeling Data Visualization Taking Action
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Column Name Description Data Type
age Age Numeric
bp Blood Pressure Numeric
sg Specific Gravity Numeric
al Albumin Numeric
su Sugar Numeric
rbc Red Blood Cells Categorical
sc Serum Creatinine Numeric
classification Chronic Kidney Disease (yes/no) Binary (Categorical)

Source: UC Irvine Machine Learning Repository

{ Sl?ggé)riqeg:]t }n{ EXDIXLE}SEE?{SData }{ Data Preparation }{ Modeling }{ Data Visualization }{ Taking Action }
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* It's time to sit down and analyze the many intricacies of the dataset

e It's important to look for different insights to understand your data as
a whole

m

IG DATA

Arnon Rotem-Gal-Oz

Director of Technology Research, Amdocs

The blind men nd the elephant. Poem by John Godfr eysa-e( rtoon originally copyrighted by the authors; G.
nnnnnnnnnnnnn http://wwwnature.com/ki/journal/v62/n5/fig_tab/4493262f1 htm|

Problem . . . . . . .
{ Statement J{ Data Acquisition }-{ Data Preparation J{ Modeling J{ Data Visualization }{ Taking Action }
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Four types of analytics:

* Descriptive: What happened? 43 _‘_p:f;cgffc.:g
» Diagnostic: Why did it happen? 32 = o)
 Predictive: What will happen? B o B
» Prescriptive: How can we make this AuAGcs _-==-=

happen? COMPLEXITY

Problem I . . e . .
{ Statement J{ Data Acquisition }-{ Data Preparation }{ Modeling }{ Data Visualization }{ Taking Action }
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Class Discovery Outlier Discovery
* Find the categories of objects * Find the new, surprising, unexpected one-in-a-
(population segments), events, and behaviors in your data million object, event, or behavior
<0
O
Correlation Discovery Association Discovery
« Find trends, pattems, and dependencies in data that » Find both the typical (usual) and the atypical (unusual,
reveal the governing principles or behavioral interesting) data associations, links, or connections in your
patterns (the object's “DNA”) domain

Problem I . . e . .
{ Statement }{ Data Acquisition }-{ Data Preparation J{ Modeling J{ Data Visualization }{ Taking Action }
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# heatmap of data
plt.figure(figsize = (15, 8))

sns.heatmap(df[num _cols].corr(), annot = True, linewidths = 2, linecolor = 'lightgrey')

plt.show()
1.0
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import plotly.express as px

fig = px.violin(df, y= "red blood cell count', x= 'class', color= 'class', box = True, template = 'plotly dark')
fig.show()

< (0, max: 8)

{0, upper fence: 5.6)

{0, y: 3.910212, kde: 0.895)

red blood cell count

{0, median- 3 9)
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DATA SCIENTIST’S WORKLOAD

B Data Preparation M Everything else

@ © @ o @ ® @
S'?;?gfé?]t Data Acquisition Explg:]aglc))/rs);SData Modeling Data Visualization Taking Action
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* Dirty data is everywhere!
 Any data with typos or errors
 Missing data
Null fields
Different labels for the same item
Duplicate entries
Entries that don’t match up with another dataset
S0 much more!

* These data entries can skew the outcome of your models

@ © @ o @ ® @
sTQ?gfgﬂn Data Acquisition Explg:]aggrs)gsData Modeling Data Visualization Taking Action
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# checking for null values

df .isna().sum{).sort _values(ascending = False)

red_blood_cells 152
red_blood_cell_count 131
white_blood_cell_count 106
potassium a8
sodium 87

packed_cell_volume 71

pus_cell 65
haemoglobin 52
sugar 49
specific_gravity 47
albumin 46

blood_glucose_random 44

blood_urea 19
serum_creatinine 17
blood_pressure 12
age g8
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« Concept that the quality of
information coming out can
only be as good as the quality
of information that went in

* In other words, the condition of
the data going into a model is
the ceiling of the condition of
the outcoming data

@ © @ o @ ® @
S'?;?grlneé?ﬂ Data Acquisition Explgggrs);sData Modeling Data Visualization Taking Action
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» Using domain knowledge to adjust the dataset and use it properly for the chosen
model and question

* Applications of feature engineering:
o Imputation BEFORE AFTER

o Handling Outliers

o Binning i h
o Scaling - ) \4
o Log Transformation

N il

o One-Hot Encoding
@ }{ QM Q}

o Grouping Operations
o Feature Split
o Extracting Date

@ © @ o
Problem - Exploratory Data
Statement Data Acquisition Analysis
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« Amodel is a representation
of a real-world process.

 Models use simplifying
assumptions to make
problems more tractable
(e.g., for analyses and
computational purposes).

 Goal: Balance representing
the real world to a high
fidelity with the level of
simplification imposed.

/

&

Real World
* Project/problem source
* Generates data

[

Real System

N

Model World \
Uses words, mathematics, symbols,

assumptions, approximations, and heuristics

to represent real-world processes

Formulate/Simplify

I

Take Actionﬁ

[

Real Conclusions

J<

)

Modeled System ]

Analysis
and
Deduction

|

Interpretation

Model Conclusions ]

7T

/

Data Acquisition

[ 2,

Taking Action }
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M) oo \What Is a Machine Learning Model?

Central Repository

* Amachine learning ML? model is a

rom data. Data Ingredients to be mixed together

, * Human provided (e.g., flour, sugar, butter, etc.)
* ML models use discovered patterns to

make predictions or decisions without
being explicitly programmed for specific

Model parameters Quantities of ingredients used in

tasks

Ah |.f | < 10 think of ML » Computer determines these recipe (e.g., 3 cups sugar, 4 thsp
* ANEIpTUl analogy IS 10 tNinK O dS butter, etc.)

akin to baking, as illustrated in the

correspondence table at right.
* The computer's goal is to determine . .

" . - Desired model output Tasty treat (e.g., cake, cookie,
the "best” way to mix data togetherto | /5 an brovided piscut, efc)

achieve a desired outcome.

@ ©) @ @ a @ @
Problem Data Acquisition Exploratory Data Data Preparation Data Visualization Taking Action
Statement a Analysis P 9




B === Types of Machine Learning

Central Repository

CLASS|ICAL MACHINE LEARNING

o
5 pre- ‘.nteqor zed Dato & mot lobeled
or numarca n "‘f wvoy

SUPERVISED UNSUPERVISED

r-d 4 "'
CLASSIFlCATION CLUSTERING Eind hidden
«Divide the socks by colers aSplit “:w';\:\c'kfnﬂl" ~y dependencies
REGRESSION
«Divide the twt by lengthn

DIMENSION

' A REDUCTION

- (generalization)

sMake the best outfas from the gven clothestn

@ © @ @ a ©) @
Problem - Exploratory Data . e . )
Statement Data Acquisition Analysis Data Preparation Data Visualization Taking Action




BE) === Supervised Learning

Central Repository
« Step 1: Provide the machine learning algorithm  Step 2: Feed the machine new,
categorized or “labeled” input and output data to unlabeled information to see if it
learn from tags new data appropriately. If not,

continue refining the algorithm

—d | -'}-_-f'-
2\ = A ¥

> ) B5S I
—) v
g e A \"T’ “NOT CATS"

MACHINE @ MACHINE [@J [@J

|

Lokel

“CATS" <

L
Problem Data Acquisition Exploratory Data Data Preparation Data Visualization Taking Action
Statement a Analysis P 9
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Central Repository

Regression is the task of predicting a
continuous numeric value.

Scatterplot of Packed Cell Volume vs. Hemoglobin

8]
o

8

Examples:

* Predicting packed cell volume using
hemoglobin measurements.

* Predicting house price using square footage. 1

Packed Cell Volume
W
o

MJ
o

4 6 8 10 12 14 16 18
Hemoglobin

* Forecasting the price of a stock.

@ ©) @ @ a @ @
Problem Data Acquisition Exploratory Data Data Preparation Data Visualization Taking Action
Statement a Analysis P 9
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Classification is the task of predicting a discrete class label.

e Data is labeled into one of two or more classes.

« Examples:

o Classifying a patient as at risk for chronic kidney disease or not
o Labeling emails as spam or not spam.

E INBOX

E— SPAM FOLDER

SPAM o %% %
@ @

Problem - Exploratory Data . e . )
{ Statement J{ Data Acquisition J Analysis J{ Data Preparation J-L Data Visualization J{ Taking Action }
|\

CLASSIFIER |




BE) == Unsupervised Learning

Central Repository
 Step 1: Provide the machine  Step 2: Observe and learn from
learning algorithm the patterns the machine

uncategorized, unlabeled input identifies
data to see what pattern it finds

- % '“-,"l_.-"“. 3 [ﬁ;ﬂj Ef; gﬂ [@J

J— SIMILAR GROUP |
"_l.l' "n.‘ )
'-.J .ﬂ"- '--..iIl /U \ /;'_p\ T
b f
1

@ ] '5‘ 1 .' \ | 1
L‘l. " H—"t = ﬂ /

= =/ ru/ \___, SIMILAR GROUP 2

A macke MACHINE &@bﬂ [%J [J

L
Problem Data Acquisition Exploratory Data Data Preparation Data Visualization Taking Action
Statement a Analysis P 9




BB === Dimensionality Reduction

Central Repository
Dimensionality reduction is the Projecting 2-dimensional data onto a 1-dimensional
process of reducing the number of input line, preserving maximum variance in the data
features in a dataset while retaining as j .
much important information as possible. : e
» Dimensionality reduction often helps | B
ML algorithms detect patterns in high- -

OO
[
N
w
=Y
w
[=)]

dimensional datasets.

o Example A photograph redUCeS 3 3 Projgction onto R: Projection onto a 1-d line in R?:
dimensional subject to a 2-
dimensional representation while == -
maintaining many important features.

H N W s U O

OO
-
N
w
F~
w
o

o 1 2 3 4 5 6 7 8 9
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Central Repository

Clustering is the process of partitioning data into subsets (segments or clusters) such
that data points most similar to one another are grouped together.

 The computer groups together data it sees as similar and separates dissimilar ones.

« Data scientists and SMEs work together to identify similar characteristics, patterns,
or behaviors among the subsets identified by the algorithm.

-------------------------------------------------------------
* .
*

L3
(3 0
-------------------------------------------------------------

@ ©) @ @ a @ @
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BB === Clustering Challenges

Central Repository

* No prior knowledge of either the number or semantic meaning of the clusters.

* The same dataset can lead to different clusters.
o Selecting different features can change the resulting clusters.

-----------------------------------------------------------------------------------------------------------------------
. 3 .
* . * ®

L3 0
. . . *
----------------------------------------------------------------------------------------------------------------------

@ ©) @ @ a @ @
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R e \Why Visualization Is Important
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: . \ Nl =
» Visualizations can express aspects &N ﬁa@ o oo .
of the data that numbers alone e gn t n; @ el
cannot demonstrate i N2l 8 ° N B
(¢ Bo Aom
l @ g
BEFORE DATA AFTER DATA
* They can tell a story about the VISUALIZATION VISUALIZATION
results I crmson e asopion
dependencies - Actionable insights
- Difficulties In - Singular view of

information absorption scattered data




R ==vveee  Aren’t Statistics Enough?
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Anscombe’s Quartet: Raw Data
1 2 3 4

* All these plots have the same: oL L

100 804| 100 9.14| 100 746| 80 6.8

80 695| 80 814| 80 677| 80 576

130 758 130 874| 130 1274| 80 771
O e a n 9.0 881 90| 877 9.0 711 80 884
110 833| 11.0 926| 11.0 781 80 847
140 996 | 140 8.10| 140 884| 80 7.04

L]

V r n 60 724| 60 6.13| 60 608 80 525
O a Ia Ce 40 426| 40 3.0 4.0 539| 190 1250
120 1084 | 120 9.13| 120 815| 80 556
70 482 70 726 70 642, 80 791

O Correlation 50 568| 50 474| 50 573| 80 6.89

Mean| 9.0 75 90| 75 90| 75 9.0 75
Variance | 10.0 3.75| 100 3.75| 100 3.75| 100 3.75

* But looking at the visualization, you can see

that they do not look anything alike / /

- Statistics can sometimes be misleading! T e

« Without effectively expressing the data, final / /

results may be left up for interpretation T e

{ S?;?:r!r?gt }{ Data Acquisition }{ Explg:]egﬁ/rs)gsData }{ Data Preparation }{ Modeling }-{ Taking Action }
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import seaborn as sns

grid = sns.FacetGrid(df, hue="class", height = 6, aspect=2)
grid.map({sns.kdeplot, 'red blood cell count')
grid.add legend(labels = ["No Chronic Disease', 'Yes Chronic Disease'])

0.5
0.4
>
=
203 class
8 === No Chronic Disease
=== Yas Chronic Disease
0.2
0.1
2g 1 2 3 4 5 6 7 8 9
red_blood_cell count
Problem - Exploratory Data . . : :
Statement Data Acquisition Analysis Data Preparation Modeling Taking Action




R o=-==<co \/isualization Tools: Open Source
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@ python’

Language

Example of Library ﬂ m a t p I O t l i b

-
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BB o=-==cose  Measuring Model Performance

Central Repository

« Measuring a model’s performance is important for users to be able to
trust the model outputs

« Model performance not tracked over time can have direct and indirect
adverse effects

« Ensure you are tracking appropriate metrics for the given model and
dataset

« Classification
= Accuracy
= Precision
= Recall

» Regression
= Mean Absolute Error
= Mean Squared Error

= Root Mean Squared Error
= R-squared

Problem - Exploratory Data . . . -
{ Statement J{ Data Acquisition }{ Analysis }{ Data Preparation J{ Modeling J{ Data Visualization }-
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Machine Learning Deep
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NEP):;?::::;;;:::E Supervised & Unsupervised Learning

Central Repository
Supervised: labeled data Unsupervised: unlabeled data
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BB === | inear Regression - Equation
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m = slope ofIin/e/

‘ 1 b = y-intercept
Yy = 91X1 _I_HO Ly

(linear regression)

New notation to learn, but the same idea




BB === | inear Regression - Parameters

Central Repository

How do you decide what your 8,and 8, (the coefficients/parameters) should be?

Scatterplot of Packed Cell Volume vs. Hemoglobin

9]
[=]

We could just draw a line
that looks good to us...

But there’s a better way to
obtain the regression line of
best fit.

Packed Cell Volume
3 &

W)
o

=
o

4 6 8 10 12 14 16 18
Hemoglobin

Minimizing our cost function: least squares estimation
n
1 A\ 2
J(0) == (yi — i)

n

o 64




ﬁ::ms;“ Gradient Descent
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Single input

Wmin




N_ational Institut_e of _ . .
NIH e Multiple Regression

Central Repository

We can extend our regression model to include more features
Yy = 91X1 -+ 92X2 + ... T Han -+ 90

El x {R.El:l Blood Cell cﬂ'l_l_'llt.} -} HE i {Hemgg]gbm) N

A hyperplanein R?isaline A hyperplanein R3i |§_¢_“=|_ plane
A
What would our I NE A e R B TN
model look like with 7% i "
more features? %l | o TN | o=



https://images.deepai.org/glossary-terms/3bb86574825445cba73a67222b744648/hyperplane.png

BB o===cSymmary: Linear Regression

Central Repository

s

Pros: Cons:

« Simple * Qversimplifies many real-world problems
* Easy to interpret * As the name implies, assumes a linegr

» Computationally inexpensive relationship between model parameteys

and dependent variables
* Sensitive to outliers




m):’;?zrsis:‘é@;i:;“ From Linear to Logistic Regression
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» We used linear regression to predict on a
quantitative continuous data type

 What if we want to predict a category of data?
« Nominal — Named categories
* Ordinal — Categories with implied order
» Discrete — Finite values

* Using logistic regression, we can predict
classes of objects.
» What type of data might be involved in

predicting whether a patient has chronic
kidney disease?




m);’;z“z::::;ggg::e Example - Kidney Disease Detection
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O

Your data might look something like this:

Chronic Kidney Disease vs. Hemoglobin

Yes DR S & O

No L L *0 0N P TR 9 T ¢ @ ¢ L
4 6 8 10 12 14 16 18
Hemoglobin

How would you define boundaries to model this data?




BB >=-==cs Maybe Something Like This?
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* Here is our line of best fit (linear regression):
 What's wrong with this model?

Chronic Kidney Disease vs. Hemoglobin

Yes

No

MathBits.com

4 6 8 10 12 14 16 18
Hemoglobin

Chronic Kidney Disease (Yes/No)



BB o===c-  Or Something Like This?

Central Repository

 As you may have ascertained, this is not a linear regression problem.
* An ideal boundary might look more like this:

,m

an Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Chronic Kidney Disease vs. Hemoglobin
Yes

No - — oe® o ® o ®
4 6 8 10 12 14 16 18
Hemoglobin

Chronic Kidney Disease (Yes/No)




B o=ee | ogistic Regression
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* A statistical method for analyzing a dataset that has one or more
Independent variables that determine an outcome

« Simplistic algorithm, but often makes a good baseline model
» Used to predict a binary outcome (1/0, Yes/No, True/False)

* Allows us to create models for classification problems: Binary Multiclass
. . .. Classification Classification
o What animals are in this image? A
O |S thIS emall Spam’? Bir:aryclassification: Multi-class classification: @
o Disease predicted? X L_J
X5 X " * Spam
OOO * Not spam e Cat
O ¢ H.orse
* Fish
* Bird




B o= | ogistic Regression - Equation

Central Repository

* Logistic regression is just linear regression with one
additional step

y = 01 X1 + 0

J 1
p— )
o(y) =7 =

All values become
constrained between 0 and 1
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omamaaveee - SUMMary: Logistic Regression
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Pros:

« Easy to interpret
* Quick to train
* Provides probabilities as outputs

s

Cons:

* Poor performance in large feature spa

CES

» Cannot handle large amounts of categorical

variables well
* In practice, it's typically only applied to
binary classification outcomes




NEP):;?::::;;;:::E Supervised & Unsupervised Learning
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Supervised: labeled data Unsupervised: unlabeled data
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NIH e Unsupervised Learning - Overview
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Uncovering inherent structures, patterns, and relationships
hidden in collections of unlabeled data

o =
B 2 -0
Raw Data Algorithm Clusters,  Royiew & Use

Anomalies
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m) What Do You Do with Unlabeled

Input Raw Data e

Unlabeled Data

Image Source: Unsupervised Learning in Precision Medicine | mdpi.com



https://www.mdpi.com/2076-3417/14/20/9305

m) Refresher: Dimensionality

Diabetes and Digestive
and Kidney Diseases

Central Repository R e d u Cti O n

Dimensionality reduction is simply the process of
reducing the dimensions of your feature set

6
5 .
Do,
.
4 - ;.'
3 .c (Thd
e
2 . s '; [
’I
1 .'.-
0 L]
0 1 2 3 4 5 6

Projection onto R: Projection onto a 1-d line in R?:
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w
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0 1 2 3 4 5 6 7 8 9




B === Example — Kidney Disease Data

For each patient you find, you have data on the following features:

age =Age sod = Sodium
pot = Potassium hemo = Hemoglobin
pcv = Packed Cell Volume wc = White Blood Cell Count
rc = Red Blood Cell Count htn = Hypertension
dm = Diabetes Mellitus cad = Coronary Artery Disease
appet = Appetite pe = Pedal Edema
ane =Anemia bp = Blood Pressure
sg = Specific Gravity al = Albumin
su = Sugar rbc = Red Blood Cells
pc = Pus Cell pcc = Pus Cell Clumps
bgr = Blood Glucose Random bu = Blood Urea
sc = Serum Creatinine classification = Chronic Disease (Yes/No)




MB) oo Principal Component Analysis (PCA)
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We have a lot of features in our data, so it can be difficult to make sense of the
data in this form. We can use principal component analysis (PCA) to reduce our
data to two dimensions, which is a great way to visualize feature-rich data.

Kidney Disease Data in 2-Dimensions

age = Age sod = Sodium
pot = Potassium hemo = Hemoglobin
pev = Packed Cell Volume wc = White Blood Cell Count 4 -
1¢ = Red Blood Cell Count hin = Hypertension g ®
dm = Diabetes Mellitus cad = Coronary Artery Disease g 2
appet = Appetite pe = Pedal Edema » g ’.
ane = Anemia bp = Blood Pressure L_n; 0 % v g? Y
sg = Specific Gravity al = Albumin % % Soke
sU = Sugar rbc = Red Blood Cells g -2
pc = Pus Cell pee = Pus Cell Clumps
bgr = Blood Glucose Random bu = Blood Urea —4
8¢ = Serum Creatinine classification = Chronic Disease (Yes/No)

-8 -6 -4 —2 0 2

Principal Component 1

But what are these two dimensions now?
What are these PCA “components” on the X and Y axis?




MIB) oo\ Which Patients Have Kidney Disease?
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 We need a way to assign labels (kidney disease yes/no) to our data
» Clustering techniques (like k-means) provide a possible solution

Kidney Disease Data in 2-Dimensions

Yes Kidney Disease
No Kidney Disease

Principal Component 2
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Pros: Cons:

* Prevents overfitting « Difficult to interpret new components

« Removes correlated features * (Can lead to losing information

 Speeds up other machine learning  Computationally expensive
algorithms

* Improves visualization
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NIH e K-means Clustering
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e Clustering describes the process of grouping data into
shared characteristics

» The characteristics of a group may vary by data

« K-means takes a data sample as input and outputs the
cluster that the new data point belongs to, according to the

training that the model went through

Location Shape Density




D) veecinivnese How Does K-means Work?
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 An iterative process of clustering or finding groups of data in
our dataset that are similar to one another

e [terates until it reaches the best solution of clusters in our
problem space

Original unclustered data Clustered data

— ! ! ! 1 ! ! 1 ! -2 ! ! ! ! ! ! ! !
-3 -2 -1 0 1 2 3 4 5 6 -3 -2 -1 0 1 2 3 4 5 6
&I Hig

1 1
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1.Choose k data points to be
the Initial centroids (cluster
centers)

2.Assign each data point to
the closest centroid

3. Re-calculate the centroids
5 using the average of the
assigned points

4. Iterate (repeat) over steps 2
. . . . . . - . & 3 until the centroids no
| o ' ' | | longer move (converge)




D) eeecineesne  Not 2 Perfect Solution. ..

Principal Component 2

Central Repository

Predicted Unsupervised Labels

Kidney Disease Data in 2-Dimensions

Actual Labels

Kidney Disease Data in 2-Dimensions (Colored by Category)

o~ *
—
5 [ ]
5 ? .
o . °* '. .' °
g ® Y
L 1] L] ®
8 0 . - L ] - Y '. ® ‘ g.'. .£
g ° °. b S J.
E ¢ L L)
- =2 ®
[a18 O )
° .
-4
o
-8 —6 -4 -2 0 2

Principal Component 1
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s

Pros: Cons:

» Easy to understand and implement | * Resulis are highly variable and deperfdent
« Computationally inexpensive on initial values

+ Guarantees convergence + Sensitive to outliers
« Struggles with data of varying sizes and

densities
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Deep Learning
Overview
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Artificial Intelligence

A program that can sense,
reason, act, and adapt

Machine Learning

Algorithms whose performance
improves as they are exposed to more
data over time

Deep Learning

Subset of machine learning in
which multilayered neural
networks learn from vast

amounts of data
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Why deep learning

/ Deep learnin

e
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O
-
©
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Amount of data

How do data science techniques scale with amount of data?
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m) Deep Learning Inspired Party from
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dendrites
nucleus
Human neuron
gg'gy axon

in1 2:3:inah
Neural network node in, out

in
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m)““’ The Perceptron (A Single "Neuron™)
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Weighted
Sum

Weights
Constant G>\
w

output value

v
=

inputs —

Step Function




D) veeeimionese "Feed Forward” Neural Networks
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 This is the most basic, vanilla form of
neural network that all other neural
networks use as a foundation.

» Number of layers and nodes/neurons
per layer is a choice made by network's
architect(s).

 Each node is essentially a perceptron.




DI oo mioeesne oy Neural Networks Learn
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* Like we've seen previously, neural
networks can use gradient descent to find
ideal weights.

* But, they have a special trick called
backpropagation to calculate the
gradients.

 Backpropagation leverages the chain
rule, though this goes beyond the scope ™™= hidden layer 1 hiddenlayer2  output layer
of this class.




= Neural Networks in Python

1F TensorFlow
O PyTorch

Keras




R o=-==cose Summary: Neural Networks
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Pros: Cons:

* Able to capture more complexity in | < Computationally expensive fo frain
a model | * Needs lots of data

* Widely applicable to real-world + Can require lots of parameter tweaking
business problems and retraining

* Once trained, predictions are fast  Has a "black box" nature
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R == Specialized Topics in Data Science
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« Computer Vision: Interdisciplinary subfield of Al that enables interpretation
and understanding of digital images or videos.

 Time Series Analysis: Modeling a sequence of data over an interval of time.

 Natural Language Processing (NLP): Interdisciplinary subfield of Al that
enables interpretation and understanding of natural language data (e.qg., text
and speech).
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Classification Instance
+ Localization

Classification Object Detection

Segmentation

N AT Ny

CAT, DOG, DUCK CAT, DOG, DUCK

A N _/
Y

Single object Multiple objects
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The problem:
Given a collection of images of handwritten digits,
determine which single-digit value was written.

g1 23Ms 6 79
0 (2% 4 5678 9
O | 23 & s L 7 82 9
o ! A J ¥ %5 6 1 F B
D | 23 4 ¢ b7 87
O/ A2 4 5 (7 ¢ 5
! 23 4 ¢ & 7 D9
e ¢ 223 4 5 {4 7T 3
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* How do computers make
sense of images?

 They convert them into a grid
of pixel values.

 For example, in a color image,
each pixel has a coordinate
location on the image and an
Intensity value associated with
the red-green-blue (RGB) color
model.
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Conceptually, we can imagine each hidden layer of
neurons acting to identify more and more complex
features:

o (O™ layer (the input layer) is the numeric pixel data
of our image.

* 1st|ayer learns to look for vertical and horizontal
lines.

« 2"dJayer learns to put the lines together to form
loops.

» 3 Jayer (output layer) puts all of it together to
decide what number the computer is "seeing."
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WHEN A USER TAKES A PHOTO
THE APP SHOULD CHECK WHETHER
THEY'RE. IN A NATIONAL PARK ...

SURE, ERSY GIS LOOKUR
GIMME A FEW I'lm

.+ AND CHECK UHETHER
THE PHOTD 15 OF A BIRD.

ILLNEEDHF‘ESEFRU-I

i

IN C5, IT CAN BE HARD TO EXPLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.
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Four UWF images (a) and the segmentation results from experienced ophthalmology experts (b) and
the segmentation model (c) were randomly selected for representation. The automatic segmentation of

the optic disc and the vessels were very close to the doctor’s annotation.

Source: Screening CKD with Deep Learning | nature.com



https://www.nature.com/articles/s41746-024-01271-w

Diabetes and Digestive
and Kidney Diseases

m) Difficult Use Case: Chihuahua or

Central Repository
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IFYOUR DATA HAS A TIME
STAMP

Time Series Analysis

YOU'RE A TIME SERIES ANALYST,
HARRY

mamegensrator.net
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* Time series data are commonly
encountered in everyday life.

* Time series data is periodically
captured for a given time period.

« Examples include financial prices,
weather, home energy usage, height
measured over time, etc.

« Stock prices and market indices
are common examples.

122.28 usp NASDAQ: GOOGL

+30.06 (32.60%) 4 past year

Closed: Oct 26, 4:28 PM EDT - Disclaimer
After hours 122,22 -0.060 (0.049%)

10 aD ™ &M YTD 1Y sy Max

140

123.72USD Jun 1, 2023
120
100

a0

Jan 120?_3 May r2023 Sep 12023
Open 123.27 Mkt cap 1.55T CDP score A
High 124.33 P/E ratio 2419 52-wk high 141.22

Low 121.27 Div yield - 52-wk low 83.34




B === Seasonality in Time Series Data

Central Repository

* Periodic fluctuations in the graph.
* Trends that reoccur over time.
« Example: energy consumption is high during the day and low at night.

Time Series Analysis Plots
Dickey-Fuller: p=0.00000
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 Atime series is stationary when its statistical properties do not change
overtime (e.g., constant mean and variance).

« Stationary time series are ideal for modeling.
* The plot from the slide before is considered stationary.

Time Series Analysis Plots
Dickey-Fuller: p=0.00000
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« Smoothing methods reduce the effects of the random variation that comes
from seasonality.

* These methods reveal the underlying trends in the data.
* Forecasts are weighted averages of past observations.

* There are two groups of smoothing methods:
o Averaging Methods
o Exponential Smoothing Methods
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* Also known as rolling means.
A naive way to evaluate the intricacies of the data.
* The next observation is the mean of a given window or all past observations.

* Awindow applies the moving average model to smooth the time series and
highlight different trends.

- Rolling mean trend
- Actual values
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R === Exponential Smoothing Methods

Central Repository

* Use this method for data sets that are more irregular where there is no
seasonality or trends.

« Calculated as a weighted average from the previous level and the current
observation.
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ARIMA models in time series forecasting predict future values based on historical data
and patterns.

* AR: Autoregression

g0 4 = forecast

 Linear relationship with previous data —— Passengers

* lag observations — parameter p 7.5 1 W 95% confidence interval
e |: Integrated 7.0 -

« making the time series stationary

- differencing order — parameter d 651
* MA: Moving Average 6.0

 uses the moving average for previous data
* residual error window size — parameter g

5.0 1

45

1954 1959 1964 1969

The SARIMA model also accounts for seasonality patterns
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m) Something to Remember about Time
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impossible
to predict
stock prices
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Why is it hard? (

e

% I'm a huge metal fan

0o ® /v

Natural Language
Processing (NLP)

NLP is hard.
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* How can we draw insights from our data when it has a lot of text?

* The focus of NLP is to program computers to process and analyze large
amounts of natural language data.

» Many real-world use cases:

o Machine translation
o Chatbots
o Resume filtering
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What do you look for when you read an e-mail?

From: Someone, David [USA] <Someone_David@bah.com:>
Sent: Tuesday, January 8, 2019 4:28 PM

To: You, Silly [USA] <You_Silly@bah.com>

Subject: Quick chat about NLP

Hello,

I just wanted to take a moment of your time to tell you about NLP. I’'m not talking about neuro-linguistic
programming, though it does come up often when typed into a Google search. I'm expecting you as a human that
understands context to get that I’'m referring to natural language processing. | also expect that by the end of this
email you will know my name and that | am an individual and not a puppy or corporation. Would you be free this
weekend to grab coffee at the local Starbucks to talk more about NLP?

Best,
David| =
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[+]

From: Someone, David [USA] <Someone_David@bah.com:
Sent: Tuesday, January 8, 2019 4:28 PM

To: You, Silly [usa] <You_Silly@bah.com:=

Subject: Quick chat about NLP

Hello,

I just wanted to take a moment of your time to tell you about NLP. I'm not talking about neuro-linguistic
programming, though it does come up often when typed into a Google search. I'm expecting you as a human that
understands context to get that I'm referring to natural language processing. | also expect that by the end of this
email you will know my name and that | am an individual and not a puppy or corporation. Would you be free this
weekend to grab coffee at the local Starbucks to talk more about NLP?

Best,
David =
Suggested Meetings ~ + Get more add-ins
We think we've found an event A

Would you be free this weekend to grab coffee at the local Starbucks to talk more about NLP?

4 When: 8:00 AM - 8:30 AM Saturday. January 12, 2019
Who:

Where:

Enter location (V]
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How do we convert human language to something a computer can understand?

Corpus All unique "tokens"

Document 1: "Today was

a great, great day." - "Today", "was", "a", "great", "day",
Document 2: "l like "', "like", "puppies"”

puppies.”

count vectorizer

130
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DOCID day great a puppies | like was Today

L]

[O, 2, 1, O, O, 0, 1, 1] B word vectors
— a.ka.

0,0,0,1,1,1,0,0] "word embeddings"

Now, our text is in a representation that our machine learning models can understand.

131
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What is less than ideal with our count vectorizer?
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What is less than ideal with our count vectorizer?

Count vectorizers treat all occurrences of words equally, so

common words (e.g., "the", "a", "of"...) dominate the signal of a vector.
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tf-idf = term frequency X inverse document frequency

; N
tfldfi,j = tfi,j Xl()g (E)

L

tfu= total number of occurences ofiin j

df = total number of documents (speeches) containing i
N = total number of documents (speeches)
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What's different here?

Instead of creating a vector for each
of our documents, we can create a
vector for every word in our
vocabulary.

How does it work? Hidden layer

Uses a neural network to predict what

word comes next in a sequence, 2 g(embeddings
then adjusts the vector for the target  prgection ayer the cat sits on the |mat
word if it was wrong. l I

/ I
context/history h target w,

Softmax classifier @ @ @ @

'm piom Agueau jo1paid

135
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* The result of this strategy of vectorizing words means that individual words
that are used in similar contexts are spatially close together.

/N\
K'mS
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Word2Vec - Examples

king : .~

Male-Female

O

walking

k///////’ c)f'

L4

swimming

Verb tense

Spain \
Italy \Madrid
Rome

Berlin
Ankara

Russia
Moscow
Canada Ottawa
Japan
P Tokyo
Vietnam Hanoi
China Beijing

Country-Capital
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Name

Description

Tokenization

Part-of-speech (POS)
Tagging

Dependency Parsing

Lemmatization

Sentence Boundary
Detection (SBD)

Named Entity Recognition
(NER)

Entity Linking (EL)
Similarity

Text Classification

Sentiment Analysis

Segmenting text into words, punctuation marks, etc.

Assigning word types to tokens, like verb or noun.

Assigning syntactic dependency labels, describing the relations between individual
tokens, such as subject or object.

Assigning the base forms of words. For example, the lemma of “was” is “be”, and
the lemma of “rats” is “rat”.

Finding and segmenting individual sentences.

Labelling named “real-world” objects, such as persons, companies, or locations.

Disambiguating textual entities to unique identifiers in a Knowledge Base.

Comparing words, text spans, and documents to determine how similar they are to
each other.

Assigning categories or labels to a whole document or parts of a document.

Allows us to capture meaning or intent in document
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What Did We Just
Learn?
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Data Data Science
Data Knowledge
.0
(@) L_‘
o 0 ‘-—?
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(o) 4] l &3 l ‘
0 0

Knowledge is about

connecting the dots.
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Find the pattern in the data

Data Knowledge Creativity
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Machine
Learning

Supervised Unsupervised

Dimensionality

Regression Classification Reduction

Clustering
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Algorithm Computationally expensive? Requires lots of data? Interpretable?
AL : No No Yes
Regression
Loglstlc. No No Yes
Regression
PCA Yes Yes No
K-means No No Yes
Neural Networks Yes Yes No
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* Navigate through a data science project using the seven-step data science process
« Forma SMART problem statement, understanding what data science can and cannot do
 Acquire useful data that can assist in solving the problem statement
 Explore data and analyze preliminary findings to leverage initial insights from the data
 Prepare data for use in machine learning pipelines
« Develop models to represent relationships within the data
» Render compelling visualizations to communicate data-driven narratives to your colleagues
 Applying actionable insight to your problem statement

* |dentify data opportunities within the organization to apply higher-level analytics, data
science, and machine learning
 Understand different machine learning algorithms and how to apply them
» Recognize data science specialties, such as natural language processing and computer vision

* |dentify tools that can assist in all parts of the data science process
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Arica Christensen - Christensen_arica@bah.com
Dr. Gordon Aiello - Aiello_Gordon@bah.com

March 27 - Al Fundamentals Part 1

April 24 - Al Fundamentals Part 2
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Thank Youl!
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