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NIDDK Central Repository Overview

Imaging Data Files Clinical Datasets Biospecimens

Registered Users Weekly Users Public Releases

15.8 M >8,600 
from 194 clinical studies

>16 M

7,026 >5,000 >875

Established in 2003 to facilitate sharing of data, 
biospecimens, and other resources generated from 
studies supported by NIDDK and within NIDDK’s mission by 
making these resources available for request to the 
broader scientific and research community.

• Supports receipt and distribution of data and 
biospecimens in a manner that is ethical, equitable, and 
efficient

• Enables investigators not involved with the original work 
to test new hypotheses without the need to collect new 
data or biospecimens

• Promotes FAIR (Findable, Accessible, Interoperable, and 
Reusable) and TRUST (Transparency, Responsibility, User 
focus, Sustainability, and Technology) principles

Mission

Recorded past tutorials, webinars, and other educational 
resources can be found on the NIDDK-CR website



NIDDK Data Sharing Ecosystem

The NIDDK-CR is a part of the broader NIH-funded biomedical data ecosystem and plays a key role in NIH’s FAIRness 
and TRUSTworthiness goals. The NIDDK-CR houses a broad range of data types for secondary research, provides 
access to biospecimens, and direct links to other repositories with additional resources such as genomics data.



Streamlining end-to-end data science lifecycle 
and discovery of data-driven biomedical insights.

Expected Benefits of Analytics Workbench:

Promote 
Collaboration

Minimize Data 
Movement

Support AI 
Innovation

Discover
 Data Insights

Improve User 
Experience

Advance NIDDK 
Research Mission

Data Analytics and AI Services

Data Services / API Connectors

Predictive
• Predictive modeling 

with biomarkers
•Disease Forecasting
• Simulation

Access Services Communication 
Services

Collaborate & 
Share 

Data InsightsSearch

Data Discovery
• Search
• Query
• Data Discovery 

and Exploration

Chatbot

Cognitive AI
•Natural Language 
Processing 
•Machine Learning
•Generative AI

Descriptive
•Usage Reports
•Dashboards
•Self Service BI

User-Centric
• Personalization
• Collaboration 

workspace
• Communication

Insights and Interactions

Platform Provisioning | Deployment | Monitoring | Security | Access | User Management

Data and Cloud Infrastructure Foundation

Prescriptive Data Analytics and AI Tools 
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A cloud-based analytics environment 
where researchers and data scientists 
can access a suite of integrated analytics 
tools and cloud computing resources to 
participate in data challenges and AI 
innovation.

Future Functionality: Analytics Workbench 



Visit our website for more information on our data-centric movement 
and to learn more about our past data-challenges

• Develop tools, approaches, models and/or methods to increase data 

interoperability and usability for artificial intelligence (AI) and machine 

learning (ML) applications

• Augment and enhance existing data for future secondary research, 

including data-driven discovery by AI/ML researchers

• Discover innovative approaches to enhance the utility of datasets for 

AI/ML applications

Goals of NIDDK-CR Data-science centric challenge series

NIDDK-CR Data Science Centric Challenge 
Series



Upcoming Webinars

• Aims to accelerate data science and AI-driven biomedical research by fostering collaboration between 
biomedical researchers and experts in the field

• Monthly webinar held on the last Thursday of each month

Learn more about the webinar series, register for future webinars, and 
access past webinars materials and recordings 

• Today – Impact and Innovations from use of NIDDK-CR Resources

• September 25th - Building Real-World Data (RWD) Linkages with a Focus on Quality and Reusability

Secondary Data Science and Meet the Expert 
Webinar Series

About the Series



Meet the Experts

Dr. Adam E Gaweda is an Associate Professor in the Department of Medicine 
/ Division of Nephrology and Hypertension, University of Louisville, Louisville 
KY USA. He earned his Master’s of Engineering degree in Electrical 
Engineering from Czestochowa University of Technology (Poland) in 1997 and 
his PhD degree in Computer Science and Engineering from University of 
Louisville in 2002. He also holds a Master’s Degree in Clinical Investigative 
Sciences (University of Louisville, 2009). Dr. Gaweda’s doctoral research 
focused on explainable data-driven Artificial Intelligence and Machine 
Learning models. After joining the UofL School of Medicine in 2002, Dr. 
Gaweda collaborated with Drs. Aronoff, Brier, and Jacobs, on application of 
AI/ML methods to personalized therapy of patients with Chronic Kidney 
Disease. This research resulted in one of the first AI-guided Clinical Decision 
Support Systems for managing anemia in dialysis patients, which has been 
clinically implemented at the UofL dialysis unit since 2013 and is now 
commercially available in the US. Dr. Gaweda’s current research uses 
innovative AI/ML approaches to enhance the understanding of pathologic 
processes and facilitate discovery of new therapeutic pathways for complex 
diseases.



Meet the Experts

Dr. Juliet Emamaullee is an Associate Professor of Surgery and Immunology 
(Clinical Scholar) at the University of Southern California Keck School of 
Medicine and an attending liver and kidney transplant surgeon at Keck 
Hospital and Children's Hospital-Los Angeles. She is also the Associate Chief, 
Division of Clinical Research, Department of Surgery. Dr. Emamaullee 
completed her PhD and MD degrees at the University of Alberta, followed by 
residency training in general surgery at Emory University and an abdominal 
organ transplant/HPB surgery fellowship at the University of Alberta. She is a 
surgeon-scientist with an NIH-funded translational immunobiology lab, 
exploring immunological phenotypes associated with liver transplant 
recipients. Dr. Emamaullee’s areas of expertise include computational 
biology, Fontan-associated liver disease, and living donor liver 
transplantation. 



Meet the Experts

Dr. Prasanna Santhanam is an Associate Professor of Clinical Medicine and 
Oncology at Johns Hopkins University School of Medicine, where he has been a 
staff physician since 2017. He specializes in the diagnosis and treatment of 
endocrine disorders with a particular focus on thyroidology, thyroid neoplasms, 
and metabolic bone disease.

Dr. Santhanam earned his MBBS from BJ Medical College and his Doctor of 
Medicine from NHL Municipal Medical College in Gujarat, India. Following his 
doctoral studies, he completed residencies in both Medicine and Therapeutics and 
Internal Medicine, further honing his expertise.

An active contributor to advancements in his field, Dr. Santhanam has 
participated in several committees, including the American Thyroid Association 
(ATA) and is involved with the American Board of Internal Medicine (ABIM) as a 
member of the Endocrinology, Diabetes, and Metabolism Item-Writing Task Force. 
His extensive research contributions are evidenced by numerous high-impact 
publications and successful grant applications, establishing him as a leader in 
endocrine research, particularly in biochemical, metabolic, and molecular imaging 
related to metabolic syndrome, thyroid disease, and neuroendocrine tumors.

Additionally, Dr. Santhanam serves as Co-founder  of AI-Metab, LLC, a company 
focused on developing AI-based solutions for research and analysis in 
endocrinology, particularly in metabolic imaging and cardiometabolic health.



OPENING THE BLACK BOX: 
TOWARD UNDERSTANDING 
PATHOPHYSIOLOGY OF UREMIC 
VASCULOPATHY USING EXPLAINABLE AI
Adam E Gaweda, PhD

Associate Professor

Department of Medicine

University of Louisville

Louisville KY



OUTLINE

• Uremic Vasculopathy in Chronic Kidney Disease

• Data Scientific Challenges in Biomedical Computing

• Solving Data Scientific Challenges Using Human Inspired Computing

2



UREMIC VASCULOPATHY

3

Gansevoort, Lancet, 2013 Thompson, JASN, 2015



UREMIC VASCULOPATHY

• Evolutionary development of progressive endothelial, smooth muscle, and 
connective tissue dysfunction that lays the groundwork for eventual medial 
calcification.

• Early stage uremic vasculopathy
• Lipid metabolism

• Inflammatory processes

• Endothelial dysfunction

• Late stage uremic vasculopathy
• Mineral metabolism

4



UREMIC VASCULOPATHY

Effective diagnosis, treatment, and prevention 

of uremic vasculopathy requires better understanding 

of the pathophysiologic processes behind it 

and their contributions at different stages 

of Chronic Kidney Disease.

5



DATA SCIENTIFIC CHALLENGES

• Complex, multifactorial nature of physiologic processes

• High-dimensional data:

• Increased likelihood of missing data

• Interactions between (groups of) parameters 

• Negative feedback loops

6



WHY ARTIFICIAL INTELLIGENCE

Translating human problem-solving and cognitive skills 
into the digital domain

• Learning / Adaptation

• Pattern Recognition and Abstraction / Reasoning

• Planning / Decision Making 

7



MACHINE LEARNING

• Supervised Learning

• Unsupervised Learning

• Self-Supervised Learning

8



SUPERVISED LEARNING

9

X

Y

GIVEN X AND Y:
FIND MAPPING FROM X TO Y
  

Linear Regression / Logistic Regression

Classification and Regression Trees

Bayesian Networks

(Deep) Neural Networks



UNSUPERVISED LEARNING
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X

F

X

GIVEN SIMILARITY METRIC:
FIND PATTERNS

Clustering 
 (Hierarchical, K-means, Fuzzy C-means)
 
Self Organizing Maps

Autoencoders  
 (Self-Supervised Learning)



AUTOENCODER
SELF-SUPERVISED LEARNING

LATENT FEATURES

FUZZY ENCODING



OPENING THE “BLACK BOX”
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FUZZY ENCODING



CRIC COHORT 
SELECT BIOMARKERS USED IN ANALYSIS

13

Inflammation Lipid Metabolism Endothelial Modulators Mineral Metabolism

HS CRP

suPAR

TNF Receptor 1

TNF Receptor 2

TNF Alpha

IL6

IL10

Triglycerides

Total Cholesterol

HDL

LDL

APOA1

APOB

LP(a)

ADMA 

SDMA 

ARG 

SICAM-1 

Fractalkine

MCP-1

TGF β

Fibrinogen

FGF23

Fetuin-A

Alkaline Phosphatase

Ca (serum, intake, urine)

Mg (serum, intake)

PO4 (serum, intake, urine)

PTH

Calcitriol

FGF23

Fetuin-A



LATENT SPACE CLUSTERING
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OPENING THE “BLACK BOX”  
EXAMPLE

HIGH GFR (> 50) MEDIUM GFR (30 – 50) LOW GFR (<30)

Sex (Male / Female)

PO4 (intake, urine)

HDL, LDL, Total Cholesterol

APOA1, APOB

Basophils

Cinnamoylglycine

Kynurenic acid (urine)

Tiglylglycine

Xanthosine (urine)

Statin Use

Sex (Male / Female)

Uric acid

Ca (serum)

HDL, LDL, Total Cholesterol

APOA1, APOB

PO4 (serum)

PTH, FGF23

LDL, Total Cholesterol

APOA1, APOB

B2M, BNP, BTP, CXCL12, IL6, MPO

Fetuin-A, Fibrinogen, Fractalkine

Adipic acid, 

Cinnamoylglycine (serum, urine)

Dimethyluric acid 

Hippurate (serum, urine)

P-cresol sulfate (serum, urine)

Tiglylglycine,

Xanthosine

15

IMPORTANT FACTORS



CONCLUSIONS

• Uremic Vasculopathy is a complex, multi-factorial disease process that 
evolves over the course of Chronic Kidney Disease with significant impact 
on morbidity and mortality.

• Better understanding of the pathophysiology of uremic vasculopathy will 
improve diagnosis, treatment, and prevention.

• Complex, multi-factorial nature of this phenomenon poses challenges that 
call for advanced data scientific methods.

• Human inspired computing (AI) offers solutions to address these challenges.

16
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Creation of the  CHLA Pediatric Acute Liver Failure (CHALF) 
Score to accurately predict survival with native liver

Juliet Emamaullee MD PhD

Associate Professor of Surgery (Clinical Scholar)
Associate Chief, Division of Clinical Research
Director of Research, Abdominal transplant 

surgery (CHLA) 
Department of Surgery

University of Southern California

@DrEmamaullee
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Pediatric Acute Liver Failure (PALF): 
One of the most challenging patient populations in pediatric liver transplantation

Etiology:
● Indeterminate (40%)

● Determinate (60%)

Diagnostic Criteria:
● Liver injury 

(AST/ALT)

● Liver function 
impaired (INR)

● Encephalopathy Day 1 Day 2 Day 3

Wait or transplant?

Outcomes:
● Survival with 

native liver 
(70%)

● Liver transplant 
(15%)

● Death (15%)



NIDDK PALF Study Group 
(PALFSG)
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Can we predict whether patients with PALF recover from their disease or 
need a liver transplant?

(and in doing so, reveal facets of PALF biology?)

6



Scoring Systems to Predict Clinical 
Trajectory in PALF

McDiarmid et al, Transplantation. 2002 Jul 27;74(2):173-81.
Liu et al, J Hepatol. 2006 Jan;44(1):134-41.

Sundaram et al, J Pediatr. 2013 Feb; 162(2): 319–323.e1

• PELD Score
• Designed to predict waitlist mortality in children with chronic liver disease
• bilirubin, INR, albumin, growth failure, and age
• Does not reliably predict death in PALF

• Kings College Hospital Criteria
• Designed to predict mortality in ALF
• Prothrombin time >100 s (INR > 6.5) OR any 3 of the following (irrespective of grade of HE):

• Age <10 or >40 years, etiology: non-A/non-B hepatitis, drug-induced
• Duration of jaundice to HE >7 days, Prothrombin time >50 (INR > 3.5), Serum bilirubin >300 

• Does not reliably predict death in PALF
• Liver Injury Units (LIU) Score

• Designed to predict mortality in PALF
• Peak serum total bilirubin, peak PT/INR, and peak ammonia
• Good predictive value (c-index of 0.81) but requires peak values
• Admission LIU (aLIU) less predictive (c-index 0.76) 



The aim of this study was to create a model based on admission 
clinical variables from a large, diverse transplant referral center 
population that accurately predicts clinical outcomes in PALF

• Avoid subjective (i.e. HE) and time-based (i.e. duration of jaundice) criteria
• Avoid 'peak' lab values
• Use common clinical demographic variables/lab values
• Generate easily interpreted 'score' that doesn't require statistical understanding
• Facilitate referral to a transplant center

Objective



CHLA PALF 
Cohort



CHLA PALF 
Cohort

Overall SNL LT Expired P-value

Number of patients, N (%) 145 85 (59%) 45 (31%) 15 (10%)

Listed for transplant, N (%) 82 (57%) 34 (40%) 45 (100%) 3 (20%) 0.03 *

Age at Admission, years 
(median [IQR]) 6 [2 ,14] 8 [2, 15] 6 [3, 12] 1 [0, 2]

< 0.01 **

Female, N (%) 84 (58%) 50 (59%) 26 (58%) 8 (53%) 0.85

Race/Ethnicity, N (%) 0.01 **

White 22 (26%) 9 (20%) 2 (13%)

Hispanic 35 (41%) 31 (70%) 5 (33%)

Black 4 (5%) 2 (4%) 2 (13%)

Asian/Pacific 6 (7%) - 1 (8%)

Other 13 (15%) 1 (2%) 5 (33%)

Unknown 5 (6%) 2 (4%) -

Diagnosis, N (%) 0.001 **

Indeterminant 52 (37%) 24 (28%) 21 (47%) 7 (47%)

Drug-induced 32 (38%) 3 (7%) 1 (7%)

Autoimmune Hepatitis 12 (14%) 10 (22%) 1 (7%)

Infection 7 (8%) 9 (20%) 4 (27%)

Other 10 (12%) 2 (4%) 2 (13%)



Evaluation of 
Individual 

Variables by 
Clinical 

Outcome 



• Variables without statistical significance from the initial analysis were excluded from the 
predictive modeling. 

• A correlation matrix created from the remaining variables further excluded variables to avoid 
issues of multicollinearity. 

• Variables were log-transformed, and data was randomly split into training and testing sets at 
a 75/25 ratio to evaluate internal model performance. 

• Statistical modeling was carried out to predict the outcome of a patient based on clinical 
variables, using demographics as confounder variables.

• Modeled as a two-class comparison: SNL vs. no SNL to prevent class imbalance
• Several techniques evaluated: multinomial logistic regression (MLR), random forest (RF), 

XGBoost, support vector machine (SVM), linear discriminant analysis (LDA) and quadratic 
discriminant analysis (QDA) 

Approach to building a predictive model 
of survival with native liver in PALF 



Validation 
Cohort: 

NIH PALF 
Study Group

https://repository.niddk.nih.gov/studies/palf/



Variable selection for the final 
predictive model 

Reporting of our multivariable prediction model followed the TRIPOD 
checklist for prediction model development and validation



Creation of the PALF predictive model
• Admission variables in the final model: 

• Albumin (OR 18.1; p<0.01)
• Ammonia (OR 0.43; p<0.01)
• Total Bilirubin (OR 0.45; p<0.001) 

• The model performed well in predicting SNL (C-statistic 0.83)

• The area under the curve (AUC; 0.83 training, 0.78 validation), 
accuracy (0.75 training, 0.70 validation) and performance (F1 
score 0.79 training, 0.65 validation) confirm the model’s 
predictive accuracy  



Creation of the PALF Predictive Model

145 Pt 492 Pt



The PALF model outperformed both PELD 
(C-statistic 0.76) and Liver Injury Unit 

(C-statistic 0.76) score in predicting SNL 



Creation of the CHALF Score

• Range 5-60

• Scores >30 
predict lower 
chance of 
survival without 
LT and higher 
chance of 
mortality 



Strengths and Limitations
• Strengths:

• Large sample size in both training and validation cohorts
• Ethnically and clinically diverse patient population in CHLA cohort

• Real world experience with not all patients being evaluated for LT 
and/or being on a study

• Model relies in easily and frequently ordered admission lab tests

• Weaknesses:
• Class imbalance within clinical outcomes can impact statistical modeling
• Some patients who died may have survived with LT and some patients 

who could have survived without transplant may have undergone LT



Conclusion
• The CHALF Score accurately predicts SNL using 
common admission labs (albumin, ammonia, and 
total bilirubin) 

• This novel, externally validated score, offers a 
reliable measure of SNL and potential guidance for 
early referral for transplant evaluation



• Uses admission bilirubin, 
ammonia, and albumin

• Range 5-60

• Scores >30 predict lower 
chance of survival without LT 
and higher chance of 
mortality 



CHALF Score App



Future Directions

● Multi-center real world validation with time series data
○ Kings College, Columbia, Kansas City-Mercy Children’s Hospital
○ ICU transfer study in partnership with UK PICU Collaborative



Additional applications of NIDDK PALF Study 
Group Data and Repository



Finance, race, ethnicity and spoken language impact clinical 
outcomes for children with acute liver failure
HYPOTHESIS: Social determinants of health may impact clinical outcomes following pediatric 
acute liver failure (PALF) as well as present barriers to obtaining timely care in a transplant 
center.
DESIGN & OUTCOMES: 

CONCLUSION: The observed differences in clinical outcomes in PALF related to social 
determinants of health may highlight unconscious biases held by transplant teams. Proactive 
strategies to support and engage families with risk factors could improve patient outcomes.

Ascher Bartlett et al. 2023

Single Center 
Data

NIH PALF Study 
Group Data

Compare social 
features within cohort 
by clinical outcome:
-Spontaneous recovery 
(SR)
-Liver transplantation 
(LT)
-Death

Social factors including family support systems, caretaker 
employment, and patient spoken language may impact clinical 

outcome following acute liver failure in children. 



PALFSG Identified CD8 T-cell Signatures in Liver and Blood

Chapin et al (2020). J Pediatr Gastroenterol Nutr.
Chapin et al (2023). PLoS One.

Ascher-Bartlett et al (2022). Liver Transplantation

Liver Tissue

Blood



Online April 12, 2024
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Experimental Design:
Single center analysis of liver tissue and blood in patients with 
PALF

Jason Lee MD
(Surgical Resident/PhD Student
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Conclusions

● The NIDDK PALF Study Group Data and Tissue Repository have been 
valuable resources to augment and validate our single center studies and 
experience at Children’s Hospital-Los Angeles

● NIDDK PALF Study Group data were used to validate
○ CHALF Score to predict need for LT in children with acute liver failure
○ Impact of social determinants of health on clinical outcomes in PALF

31
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AI and Body Composition : Novel Methods to 
improve accuracy
Prasanna Santhanam, MBBS, MD

Associate Professor of Clinical Medicine and Oncology





Background

• Obesity is a major public health challenge globally, linked to diabetes, 
CVD, fatty liver, cancer.

• Rising prevalence due to socioeconomic disadvantages, lifestyle 
changes, reduced productivity.

• Traditional metrics: Weight and BMI – limited sensitivity, high variability 
across ethnicities.

• Asians have higher body fat % for the same BMI, making BMI 
inadequate for CVD risk stratification.



Background

• Waist Circumference (WC)Stronger predictor of cardiometabolic risk 
than BMI.

• WC ≥ 94 cm in men identifies high risk for CVD/T2DM (sensitivity >84%, 
specificity >78%).

• In Look AHEAD, WC increase during intervention predicted higher CVD 
risk.

• Better predictor even in children and older adults; trajectories correlate 
with T2DM onset.



Scope

• Despite evidence, WC is rarely measured in routine practice.• 
Measurement variability and site differences affect prevalence 
estimates.

• Guidelines recommend WC as a vital sign, but standardization is lacking.

• AI offers alternative: predict WC from readily available variables.



Scope

• Despite evidence, WC is rarely measured in routine practice.• 
Measurement variability and site differences affect prevalence 
estimates.

• Guidelines recommend WC as a vital sign, but standardization is lacking.

• AI offers alternative: predict WC from readily available variables.



Conformal Predictions

• Conformal Prediction with Uncertainty Quantification

• Conformal prediction (CP) is a distribution-free framework for 
quantifying prediction uncertainty in machine learning, offering valid 
confidence sets or prediction intervals under the assumption of data 
exchangeability. 

• Unlike conventional point estimates, CP provides guarantees on the 
error rate, making it attractive for high-stakes applications such as 
medicine and finance.



Conformal Predictions

• Distribution-free guarantees – CP does not require strong distributional 
assumptions and ensures coverage probability (e.g., 95%) holds on 
average across future predictions (Shafer & Vovk, 2008).

• Uncertainty quantification – By constructing prediction sets/intervals, CP 
explicitly communicates model uncertainty instead of a single 
deterministic prediction (Angelopoulos & Bates, 2021).



Conformal Predictions

• Model-agnostic applicability – CP can be applied to any machine learning 
algorithm (regression, classification, survival analysis, etc.), serving as a 
wrapper around the base model (Vovk et al., 2005).

• Calibration via nonconformity scores – Predictions are assessed using a 
“nonconformity measure,” comparing new instances to calibration data 
to adjust prediction intervals dynamically.

• Practical utility – Widely explored in healthcare AI for risk stratification, 
diagnostic support, and survival analysis, where calibrated uncertainty 
estimates are crucial (Johansson et al., 2021).



Novelty

• First application of conformal prediction to anthropometry/obesity 
research.

• Provides prediction intervals instead of single point estimates.

• Addresses uncertainty – critical for clinical adoption.

• Extends prior conformal prediction work (oncology, pathology, racial 
disparities) to metabolic health.



Research Aim

• Develop ML models to predict WC using demographic and 
anthropometric data.

• Employ uncertainty quantification using conformal prediction.• Validate 
across diabetic (Look AHEAD) and general (NHANES) populations.

• Hypothesis: Conformal prediction provides robust WC estimates with 
clinical utility.



Datasets and Variables

NHANES:• Nationally representative cross-sectional dataset (2003–2016).• 
Anthropometry, labs, demographics • n=38,493 after exclusions.

Look AHEAD:• RCT of lifestyle intervention in T2DM patients (n=4,899 at 
baseline).• NIH-funded, 8-year follow-up.• Baseline data used for external 
validation.

Predictors:

• Age, gender, weight, height, race/ethnicity, education level.

• Race/ethnicity collapsed into Hispanic, White/Black, Other/Mixed.

• Education collapsed into five categories.

• Gender-specific models due to differences in fat distribution.



Methods

Prediction Task 
• Goal: Predict WC (cm) with confidence intervals.
• Conventional ML regression: single estimates, no uncertainty.
• Our approach: Conformal prediction → intervals reflecting uncertainty.
• Adaptive intervals: Narrow for typical cases, wide for outliers/extreme cases. 
• Empirical coverage: % of true outcomes within prediction intervals.
• Prediction set size: width of interval (narrower preferred).
• Conditional coverage: subgroup performance by gender, race, education, WC 
levels.
• External validation: Train on NHANES, calibrate/test on Look AHEAD.



Methods-Preprocessing and Model Training

Preprocessing – Concatenated NHANES (2003–2016), tabulated Look AHEAD.
• One-hot encoding for categorical variables.
• Standardized continuous variables.
• Missing data exclusions: NHANES reduced from 45,377 to 38,493; Look AHEAD 
complete at 4,899.
Training- NHANES: 50% train, 25% calibration, 25% test
.• Look AHEAD: 50% calibration, 50% test.
• Grid search for hyperparameters via 10-fold CV.
• Separate upper/lower models for conformal prediction.
• Point predictions with XGBoost; Shapley values for feature importance.



Results

NHANES

• Coverage: 95.5% (men), 95.4% (women).

• Adaptive interval widths: larger for extreme WC.

• Narrower average intervals with higher α values.

• Consistent performance across subgroups; only Hispanic men showed 
marginal under-coverage.

 



• Overall Results from NHANES
• Achieved high coverage rates, demonstrating superior performance.



Results

LOOK AHEAD

• Coverage: 95.1% (men), 95.2% (women).

• Interval widths larger than NHANES → reflects population shift (general 
vs. diabetic).

• Subgroup coverage ~95%; under-coverage only at WC extremes.

• Demonstrates robustness across domain shifts.



• Performance Metrics
• Coverage rates and prediction interval widths demonstrated robustness of the 

model.



• Validation Results from Look AHEAD
• Model maintained high coverage rates across different demographics, 

validating its consistency.



• Overall Results from NHANES
Achieved high coverage rates, demonstrating superior performance.



External Validation
Confirmed the model’s performance on external datasets, ensuring 
reliability



Results

Resampling

• NHANES: Conformalized and non-conformalized coverage ≈ 95%.

• Look AHEAD: Non-conformalized underperformed (coverage <95%).

• Conformalized models recovered expected coverage after calibration.

• Confirms advantage of conformal prediction under data shift.

Point Prediction Models

• XG Boost regression: high accuracy in NHANES (R² strong).

• Look AHEAD: lower accuracy, especially in females (distributional shift).

• Feature importance (Shapley values):   

– Weight: strongest positive predictor.  

 – Height: negative predictor (controlling for weight).  

 – Age: positive association with WC.





Discussion

Strengths:

• First application of conformal prediction to obesity research.

• Robust across datasets despite domain shift.

• Clinically interpretable with uncertainty quantification.

Limitations:

• Cross-sectional data, no causality.

• Excluded diet/physical activity.

• External validation limited to Look AHEAD.

• Measurement variability in WC remains an issue.

Clinical Implications

• Reliable WC predictions without physical measurement.

• Reduces inter-operator variability.

• Facilitates integration of WC into clinical practice.

• Improves obesity risk stratification across diverse populations.



Clinical Implications and Future Directions

Implications
• Reliable WC predictions without physical measurement.
• Reduces inter-operator variability.
• Facilitates integration of WC into clinical practice.
• Improves obesity risk stratification across diverse populations.
Future
• Expand validation across more diverse datasets.
• Incorporate additional predictors (diet, PA, biomarkers).
• Develop EHR-based decision support systems.
• Explore utility in pediatrics, geriatrics, and minority populations.



Conclusions

• WC is a critical but underutilized cardiometabolic biomarker.

• ML with conformal prediction enables accurate, reliable, uncertainty-
aware WC predictions.

• Potential to transform obesity risk assessment and clinical adoption.
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• Dr. Juliet Emamaullee - juliet.emamaullee@med.usc.edu 
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Upcoming Webinar: Building Real-World Data (RWD) Linkages with a Focus on Quality and Reusability

• Date: September 25th from 2-3pm ET

• Agenda: This session is geared towards researchers interested in learning about how privacy preserving record linkage (PPRL) 
and real-world data (RWD) is being used for cross agency data linkage and generating real-world evidence.

• Quality considerations/barriers to using RWD in research, such as bias, underrepresentation of populations in data, and 
technical issues of data harmonization and linkage

• Considerations and best practices when generating, stewarding, and using RWD 

• Examples of data linkage implementations across federal health 

• Governance framework for data linkage 

• Scan the QR code register

Thank You!
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