

National Institute of
Diabetes and Digestive
and Kidney Diseases

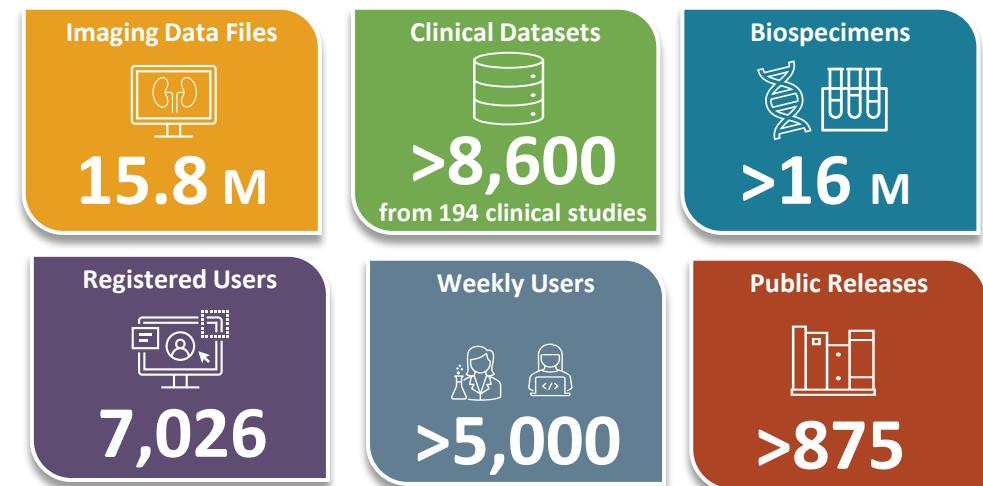
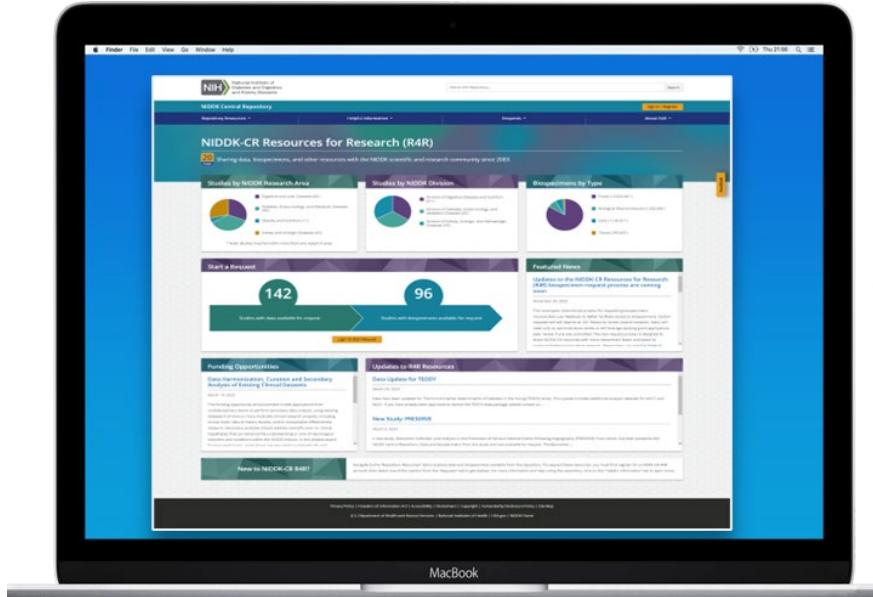
Central Repository

NIDDK-CR Resources for Research

Data Science and Meet the Expert Webinar Series

January 21, 2026

NIDDK Central Repository Overview



Mission

Established in 2003 to **facilitate sharing of data, biospecimens, and other resources** generated from studies supported by NIDDK and within NIDDK's mission by making these **resources available for request to the broader scientific and research community**.

- Supports receipt and distribution of data and biospecimens in a manner that is ethical, equitable, and efficient
- Enables investigators not involved with the original work to test new hypotheses without the need to collect new data or biospecimens
- Promotes FAIR (Findable, Accessible, Interoperable, and Reusable) and TRUST (Transparency, Responsibility, User focus, Sustainability, and Technology) principles

Recorded past tutorials, webinars, and other educational resources can be found on the NIDDK-CR website

Analytics Workbench Functionality

**Streamlining end-to-end data science lifecycle
and discovery of data-driven biomedical insights.**

Innovation and ease of use

A cloud-based analytics environment where researchers and data scientists can access a suite of integrated analytics tools and cloud computing resources to participate in data challenges and AI innovation.

Expected Benefits of Analytics Workbench:

Promote
Collaboration

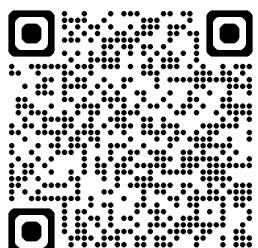
Support AI
Innovation

Minimize Data
Movement

Improve User
Experience

Discover
Data Insights

Advance NIDDK
Research Mission


National Institute of
Diabetes and Digestive
and Kidney Diseases

Central Repository

NIDDK-CR Data Science Centric Challenge Series

Goals of NIDDK-CR Data-science centric challenge series

- Develop tools, approaches, models and/or methods to increase data interoperability and usability for artificial intelligence (AI) and machine learning (ML) applications
- Augment and enhance existing data for future secondary research, including data-driven discovery by AI/ML researchers
- Discover innovative approaches to enhance the utility of datasets for AI/ML applications

**Visit our website for more information on our data-centric movement
and to learn more about our past data-challenges**

Meet the Experts

Chen Li is a professor in the Department of Computer Science at UC Irvine. He received his Ph.D. degree in Computer Science from Stanford University, and his M.S. and B.S. in Computer Science from Tsinghua University, China, respectively. He was a recipient of an NSF CAREER award and several test-of-time publication awards, a part-time visiting research scientist at Google, an ACM distinguished member, and an IEEE fellow. He was a co-founder and CTO of a startup to commercialize his research.

Kun Woo Park and Jiadong Bai are PhD students in Computer Science at UC Irvine working on the Texera project.

Apache Texera: Overview

- Supporting data science and AI/ML as workflows
- Cloud services (no installation, software patches)
- Supporting community-based sharing of data and workflows
- Shared editing/execution
- Supporting Python, R, Java as user-defined functions (UDFs)
- Started in 2016
- Open source (being incubated by Apache)
- Parallel engine, scalable

Part of NIDDK dkNET Computational Core

Making Data Science and AI/ML easily available to the NIDDK community

Welcome to the future of research and discovery! dkNET has launched a pilot project, an AI/ML computational platform designed to assist NIDDK researchers in developing hypotheses and utilizing new AI/ML techniques. The new platform will empower researchers to perform a diverse range of bioinformatics analytical tasks easily. The new AI/ML computational platform is powered by [Texera](#), which supports collaborative data analysis to bridge the gap between computational scientists and biomedical bench researchers.

Texera (screen capture below) facilitates interdisciplinary collaboration among researchers from different backgrounds. Real-time updates on users' status and activities create an environment of effective collaboration. Whether you are working individually or as part of a team, the new AI/ML computational platform will enhance research capabilities and drive impactful discoveries.

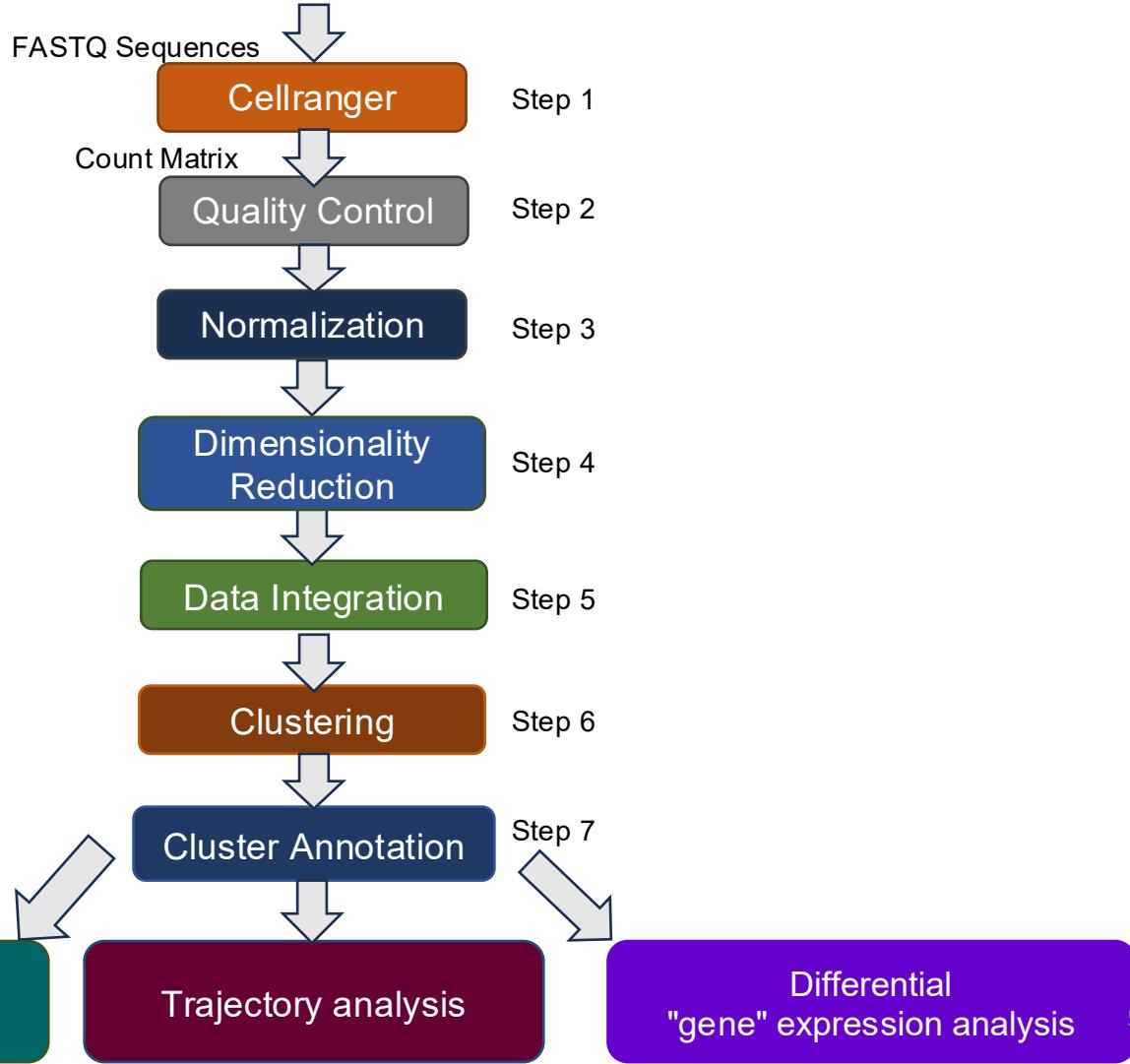
The Texera user interface showing three users collaboratively editing a workflow.

Texera offers several strengths that lower barriers for NIDDK researchers to utilize state-of-the-art AI/ML techniques and support multiple data modalities. These strengths include:

- **Collaborative functionalities:** The system supports powerful features such as shared editing, shared execution, version control, commenting, and debugging.
- **Scalability:** The engine of the system is makes it capable of handling large amounts of data and computationally expensive tasks.
- **Multi-Language support:** Texera supports multiple script languages such as Python and R, enabling NIDDK researchers to leverage machine learning capabilities within their data analytics workflows. This flexibility accommodates different programming preferences and facilitates the adoption of advanced AI/ML techniques.
- **Elasticity and reproducibility:** Texera ensures the computing platform's elasticity, allowing it to adapt to various computational needs. This scalability feature ensures that researchers can efficiently handle large datasets and complex analyses. Additionally, Texera promotes reproducibility by providing mechanisms to reproduce and replicate analyses, ensuring reliable and consistent results.

Example application: sequence analysis in biology

Sally: Bioinformatician



Alice: Biologist (PI)

Bob: Bioinformatician

Sequence analysis pipeline

Coding challenges

- Coding is hard!
- Version control of libraries
- Needs servers
- Slow on large data
- Not every lab can afford a bioinformatician


```
library(Seurat)
library(reticulate)
library(bench)
library(leiden)

RDSdir <- "/home/texera/workspace/scRNA-fastq/HPAP/RDS"
RDSreadpath <- paste0(RDSdir, "/t1d_subset-PCA-Harmony-1.rds")
clusterdir <- "/home/texera/workspace/scRNA-fastq/HPAP/Cluster"
RDS.Harmonypath <- paste0(RDSdir, "/t1d_subset-SCT-PCA-Harmony-Clustered-1.rds")
RDS.PCApath <- paste0(RDSdir, "/t1d_subset-SCT-PCA-Clustered-1.rds")

#-----Set up-----
seurat.pca <- readRDS(RDSreadpath)

ndims <- 1:28

marker_gene <- c("PRSS1", "REG1A", "CPA1", "CPA2",
                 "GCG", "GC", "TTR", "LOXL4", "IRX2",
                 "INS", "IGF2", "IAPP", "MAFA", "NPTX2",
                 "KRT19", "CFTR", "SFRP5", "HMPP",
                 "COL11A1", "PDGFRB", "RGS10", "THY1",
                 "VNFR", "CD93",
                 "NCF2", "PTPRC",
                 "PPY", "CARTPT", "PCDH10", "PLAC8",
                 "SST", "LEPR", "PRO4", "RBP4",
                 "GHR", "scDblFinder.score", "percent.mt")

# ----- UMAP -----
seurat.pca <- RunUMAP(object = seurat.pca, assay = "SCT", reduction = "pca", dims = ndims, n.component=3)
seurat.pca@misc$umap3d <- seurat.pca@reductions$umap
seurat.pca <- RunUMAP(object = seurat.pca, assay = "SCT", reduction = "pca", dims = ndims, n.component=2)
seurat.pca@misc$umap2d <- seurat.pca@reductions$umap

# ----- Clustering -----
seurat.pca <- FindNeighbors(seurat.pca, reduction = "umap", dims=ndims)

bench::bench_time({
  for (resolution in seq(0.2, 2.0, by = 0.2)){
    seurat.pca <- FindClusters(seurat.pca, resolution=2.0, method = "igraph", algorithm = 4)
    print(resolution)
  }
})

pdf(file.path(clusterdir,"PCA-umap-res2.0.pdf"), width = 16, height = 11)
g <- DimPlot(seurat.pca, reduction="umap", label=TRUE, raster=TRUE)
h <- DotPlot(seurat.pca, features=marker_gene) + Rotate90()
print(g)
print(h)
dev.off()
```

Data preparation

Data analytics

Visualization

Sally: Bioinformatician

Collaboration challenges

- Collaborators of different backgrounds
 - Biologists
 - Bioinformaticians
 - Computer scientists
- Collaborators from different organizations
 - Same lab: senior students vs new students
 - Other labs

AI/ML opportunities

- How to utilize state-of-the-art AI/ML technologies?
- Require advanced coding skills
- Not easily available

Our solution

Collaborative data science and AI/ML using GUI-based workflows

Open source (Apache Incubating)

apache / texera

Code Issues 132 Pull requests 29 Discussions Actions Projects 3 Wiki Security 55 Insights Settings

texera Public

Edit Pins Unwatch 23 Fork 113 Stared 221

main 37 Branches 5 Tags Go to file Code

feat(amber): Enable R UDF Runtime via Optional texera-rud... 8d519d8 · yesterday 7,077 Commits

chore: drop R support flags from Dockerfiles and CI ... last month

fix: correct IntelliJ run configurations by removing un... last month

chore: Move apache.amber to apache.texera.amber ... 2 months ago

feat(amber): Enable R UDF Runtime via Optional texe... yesterday

chore: drop R support flags from Dockerfiles and CI ... last month

fix: restore proper license headers for third-party co... last week

chore: Move apache.amber to apache.texera.amber ... 2 months ago

feat(ui): add pagination and search for wide-column ... 3 weeks ago

fix(datasert): enforce max file size for multipart uplo... yesterday

fix(datasert): enforce max file size for multipart uplo... yesterday

fix: restore proper license headers for third-party co... last week

fix: restore proper license headers for third-party co... last week

fix: restore proper license headers for third-party co... last week

fix(datasert): enforce max file size for multipart uplo... yesterday

chore: Move apache.amber to apache.texera.amber ... 2 months ago

chore: Redirect GitHub discussion notifications to de... last week

Add Dockerfile for each micro service and Single-No... 10 months ago

Fix nx.json on windows and add windows to CI (#1555) 4 years ago

Fix use tags/ for all services (#3887) 3 months ago

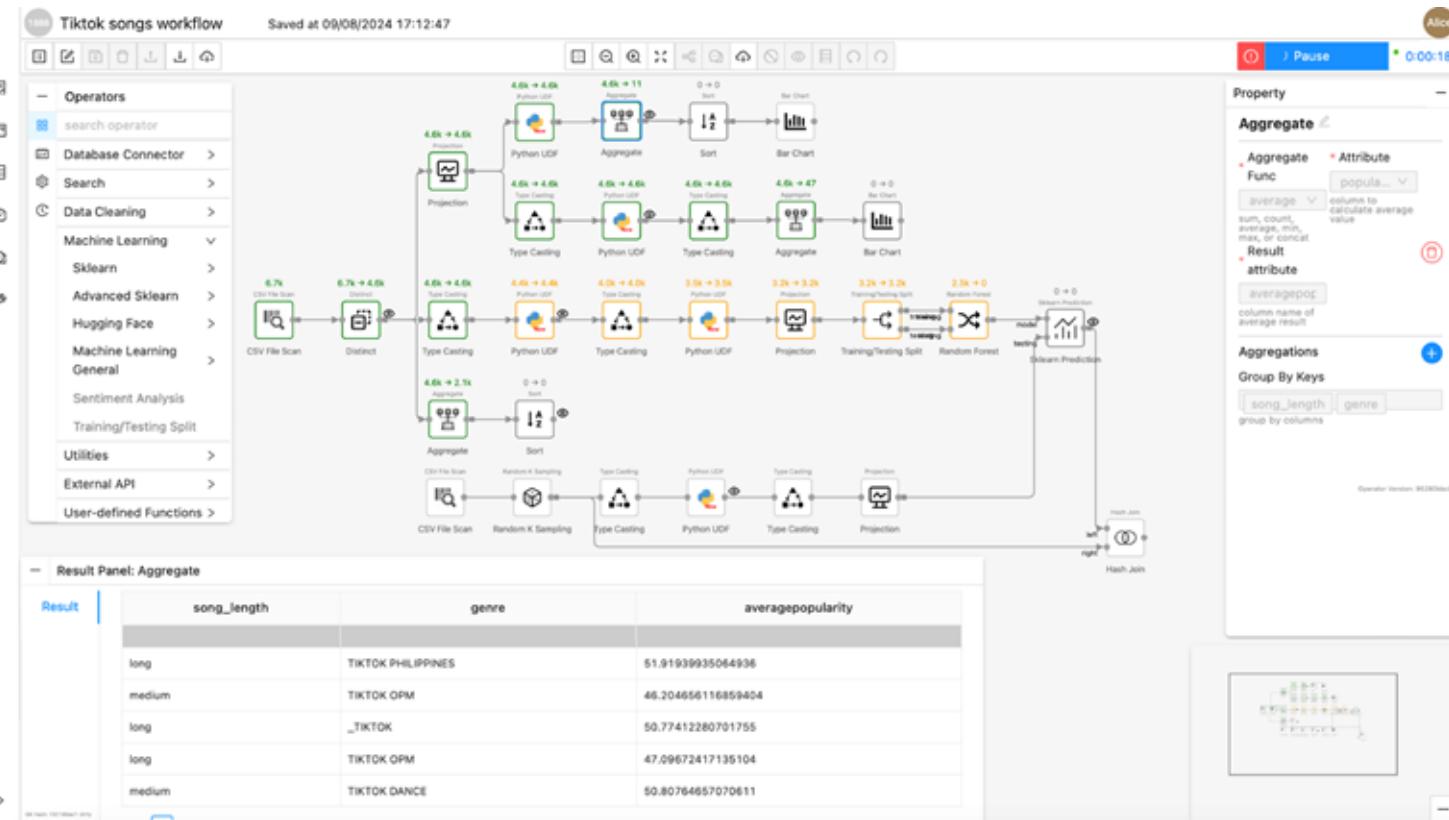
About

Collaborative Machine-Learning-Centric Data Analytics Using Workflows

texera.io/

data-science data machine-learning artificial-intelligence data-analytics cloud-native texera

Readme Apache-2.0 license Code of conduct Contributing Security policy Activity Custom properties 221 stars 23 watching 113 forks Report repository

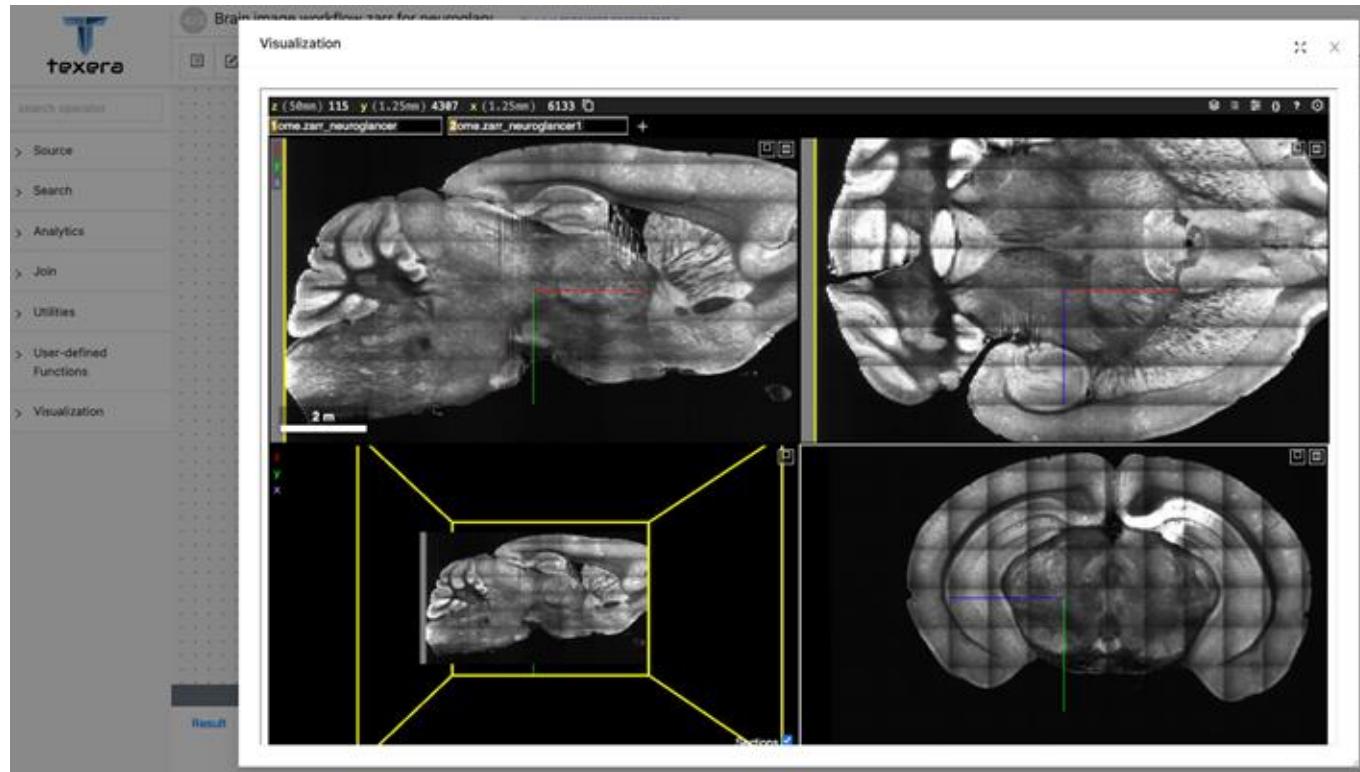

Releases 4

v1.0.0 [Latest] on Apr 4, 2025 + 3 releases

Contributors 148

148 contributors

Demo!


Statistics

ASF and GitHub (as of Dec. 2025)	
PPMC members & committers	14
ASF mentors	4
GitHub contributors	148
Open issues	129
Closed issues	783
Open pull requests	32
Closed pull requests	3,101
Usage and deployments (as of Dec. 2025)	
Users	> 600
Workflows created	> 3,000
Workflow versions edited	> 273,000
Workflow executions	> 51,000
Largest deployment: node #	100
Largest deployment: core #	400

Example: analyzing brain images, 256GB

Teaching non-STEM students AI/ML using Texera

Prof. Chen Li

2025 dkNET Summer Bootcamp

Monday, July 21, 2025 9 am-1 pm PDT	Introduction to data science, data modeling, and data preparation	Dr. Chen Li and Sarah Asad		Getting familiar with concepts related to data science. Students will start a capstone project using provided data.	https://hub.texera.io
Tuesday, July 22, 2025 9 am-1 pm PDT	Python programming to do data science	Dr. Chen Li and Sarah Asad		Using Python to do data science. Students will continue working the capstone project.	https://hub.texera.io
Tuesday, July 23, 2025 9 am-1 pm PDT	Introduction to machine learning	Dr. Wei Wang and Alexander Taylor		Getting familiar with concepts related to AI/ML Students will finish the capstone project.	https://hub.texera.io
Friday, July 25, 2025 10 am-12 pm PDT	Discussion Session: FAIR Data and DMSP	Dr. Maryann Martone Dr. Jeffrey Grethe	Assignment discussion: 1) Based on your research project and the data it is using, use dkNET tools to help you select appropriate repository(s) and work through what is needed to manage and share your data in compliance with NIH's new DMSP requirements. Work with some of your data to ensure it is FAIR and Frictionless (https://frictionlessdata.io) - document what would be needed as part of your data collection and management practices.	1) Check-in project progress 2) Assignment discussion (FAIR data; Data Management)	

Ongoing efforts

- Support management of ML models
- Incorporate more AI techniques to the platform
- Make analysis pipelines to the community
- Improve security and privacy
- High performance and scalability
- Elastic computing using cloud resources
- ...

Summary: Apache Texera

- Cloud-computing platform
- GUI-based workflows (no coding needed)
- Collaboration and sharing of data/analyses
- Parallel computing: for big data
- Supporting multiple languages: Python, R, Java, ...
- Supporting AI/ML (training, inference, ...)

Advancing Collaborative Data Science with Texera

Prof. Chen Li

Department of Computer Science

UC Irvine

National Institute of
Diabetes and Digestive
and Kidney Diseases