An official website of the United States government

Publication Information

PubMed ID
Public Release Type
Journal
Publication Year
2019
Affiliation
a Department of Mathematics and Computer Science, Physical Sciences and Earth Sciences, University of Messina, Messina, Italy b Institute of Clinical Physiology - Reggio Calabria Unit, Laboratory of Bioinformatics, National Research Council, Italy c Department of Ancient and Modern Civilizations, University of Messina, Messina, Italy
Authors
De Meoc P, Fiumaraa G, Mezzatestaa S, Torino C, Vilasi A
Studies

Abstract

Background and Objective: Patients with End- Stage Kidney Disease (ESKD) have a unique cardiovascular risk. This study aims at predicting, with a certain precision, death and cardiovascular diseases in dialysis patients. Methods: To achieve our aim, machine learning techniques have been used. Two datasets have been taken into consideration: the first is an Italian dataset obtained from the Istituto di Fisiologia Clinica of Consiglio Nazionale delle Ricerche of Reggio Calabria; the second is an American dataset provided by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) repository. From each one we obtained 5 datasets, according to the outcome of interest. We tested different types of algorithm (both linear and non-linear), but the final choice was to use Support Vector Machine. In particular, we obtained the best performances using the non-linear SVC with RBF kernel algorithm, optimizing it with GridSearch. The last is an algorithm useful to search the best combination of hyper-parameters (in our case, to find the best couple (C, ? )), in order to improve the accuracy of the algorithm. Results: The use of non-linear SVC with RBF kernel algorithm, optimized with GridSearch, allowed to obtain an accuracy of 95.25% in the Italian dataset and of 92.15% in the American dataset, in a timeframe of 2.5 years,in the prediction of Ischaemic Heart Disease. A worse performance was obtained for the other outcomes. Conclusions: The machine learning-based approach applied in our study is able to predict, with a high accuracy, the outbreak of cardiovascular diseases in patients on dialysis.